《固体物理学导论》课程PPT教学课件:第四章(声子Ⅰ)点阵振动

第四章(声子I)点阵振动 §1一—维原子链的点阵振动 1.简谐近似 这一章我们要考虑原子在平衡位置附 近的振动。这种考虑是建立在简谐近似的基 础之上的,所谓简谐近似即认为振动是小振 动,振幅很小,这种振动的位移与力之间是 满足线性关系的 F=-CX
第四章(声子Ⅰ)点阵振动 §1.一维原子链的点阵振动 1.简谐近似 这一章我们要考虑原子在平衡位置附 近的振动。这种考虑是建立在简谐近似的基 础之上的,所谓简谐近似即认为振动是小振 动,振幅很小,这种振动的位移与力之间是 满足线性关系的。 F=-cx

从能量的角度来看,认为原子 间有了相对位移后,两原子间 的相互作用势也有了变化 将势能展开成级数: u=uo+(ou 2 0x2 5ot
从能量的角度来看,认为原子 间有了相对位移后,两原子间 的相互作用势也有了变化 将势能展开成级数: 2 0 2 2 2 2 0 2 1 x x x x u c x x u x x u u u O O ( ) ( ) ( ) = + + = +

u st p p

2.一维单原子点阵的运动方程和色 散关系 维单原子点阵在每个阵点上 只有一个原子,第s个原子相对于 它平衡时的位移是Us。第s个原 子所受到的来自第s+p个原子的作 用力与它的对位移l-成正比
2.一维单原子点阵的运动方程和色 散关系 一维单原子点阵在每个阵点上 只有一个原子,第s个原子相对于 它平衡时的位移是Us。第s个原 子所受到的来自第s+p个原子的作 用力与它的对位移 us −us+ p 成正比

第s个原子所受到的力等于所有原子作用力 的总和: ∑ tp Mu=∑cn( (S=12.3.… 当s取不同值时,上述方程为一方程组代 表各个原子的位移和运动
第s个原子所受到的力等于所有原子作用力 的总和: Mus = 当s取不同值时,上述方程为一方程组代 表各个原子的位移和运动。 ( s s p ) p s p F c u u = − − + c u u s 1.2.3.......N) s p s p (p + − ) ( =

原子在平衡位置附近的小振动可 看作是耦合的简谐振子的运动。这种 耦合谐振子可以通过正则变换化成 组独立的无相互耦合的简谐振动的运 动。经过这样变换的每一个独立的谐 振子代表简正模式,点阵振动的简正 模式是指有一定频率、一定波矢的平 面波,第s个原子的位移按简正模式解 可写成: u =u(o eicot-ska
原子在平衡位置附近的小振动可 看作是耦合的简谐振子的运动。这种 耦合谐振子可以通过正则变换化成一 组独立的无相互耦合的简谐振动的运 动。经过这样变换的每一个独立的谐 振子代表简正模式,点阵振动的简正 模式是指有一定频率、一定波矢的平 面波,第s个原子的位移按简正模式解 可写成: ( ) i( t ska) s u u e − − = 0

这也就是频率为ω,波矢为k 的平面波对第s个原子位移的贡 献。这个平面波称之为格波, 把寻求到的运动方程的解带入 运动方程就能找出ω与k的关系 即所谓色散关系
这也就是频率为ω,波矢为k 的平面波对第s个原子位移的贡 献。这个平面波称之为格波, 把寻求到的运动方程的解带入 运动方程就能找出ω与k的关系 即所谓色散关系

(其中u=00如u带入运动方程得: 将 (0) i(wt+ka) Mo=∑qen-e1n 约去两边相同的因子得: 0M mp-1) P P e代表第s+p个原子的位移的位相差
将 带入运动方程得: (其中u =u ) M 约去两边相同的因子得: 代表第s+p个原子的位移的位相差。 i wt ka ika s u = u e = ue − ( + ) (0) i t e − (0) ue C e e u i s p ka iska p p iska [ ]. 2 = − + ( ) 2 = − ( ipka −1) p p M c e ipka e

由于点阵有平移对称性(tp原子与-p原子 的力常数相等)。Gp=Cp 则 M=-∑Cn(e-1)+∑ p≥0 p≥0 ∑ er+e 利用欧拉合成化简可得: 2 ∑ ≥0 这就是一维单原子晶考虑了所有原子的作用 后得到的格波的频率与波矢所满足的关系
由于点阵有平移对称性(+p原子与-p原子 的力常数相等)。Cp=C-p 则 =- 利用欧拉合成化简可得: 这就是一维单原子晶考虑了所有原子的作用 后得到的格波的频率与波矢所满足的关系。 [ 1 1 ] 0 0 2 = − ( − )+ ( − − ) − ipka p p ipka p p M C e C e ( 2) 0 + − − ipka ipka p p C e e c( pka) m p p 1 cos 2 0 2 = −

通常只考虑最近邻原子的作用(最近邻近 似) C P=1 P>1 则色散关系变为: C (-cos ka) M 或 4c O I sin ka l M
通常只考虑最近邻原子的作用(最近邻近 似): 则色散关系变为: 或 = = 0 1 1 P C P cP 2 = ( k a) M c 1 cos 2 − k a| M c 2 1 | sin 4 =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《固体物理学导论》课程PPT教学课件:第三章 晶体结合.ppt
- 《固体物理学导论》课程PPT教学课件:绪论、第一章 晶体结构.ppt
- 《大学物理》课程PPT教学课件:课程PPT教学课件(英文版)Chapter 1 Introduction.ppt
- 《液晶物理学》课程教学材料:PDF电子书(共十二章).pdf
- 《力学》课程教学资源(PPT课件)第6章 狭义相对论基础.ppt
- 《力学》课程教学资源(PPT课件)第5章 刚体的定轴转动.ppt
- 《力学》课程教学资源(PPT课件)第4章 功和能.ppt
- 《力学》课程教学资源(PPT课件)第3章 动量.ppt
- 《力学》课程教学资源(PPT课件)第2章 质点动力学.ppt
- 《力学》课程教学资源(PPT课件)第1章 质点运动学.ppt
- 《固体物理学》课程教学资源(讲义)第四章 能带理论(4.3)三维周期场中电子运动的近自由电子近似.pdf
- 《固体物理学》课程教学资源(讲义)第四章 能带理论(4.2)一维周期场中电子运动的近自由电子近似.pdf
- 《固体物理学》课程教学资源(讲义)第四章 能带理论(4.1)布洛赫定理.pdf
- 《固体物理学》课程教学资源(讲义)第三章 晶格振动与晶体的热学性质 3.1 简谐近似和简正坐标.pdf
- 《固体物理学》课程教学资源(讲义)第三章 晶格振动与晶体的热学性质(3.10)晶格的状态方程和热膨胀.pdf
- 《固体物理学》课程教学资源(讲义)第三章 晶格振动与晶体的热学性质(3.11)晶格的热传导.pdf
- 《固体物理学》课程教学资源(讲义)第三章 晶格振动与晶体的热学性质(3.8)晶体热容的量子理论.pdf
- 《固体物理学》课程教学资源(讲义)第三章 晶格振动与晶体的热学性质(3.9)晶格振动模式密度.pdf
- 《固体物理学》课程教学资源(讲义)第三章 晶格振动与晶体的热学性质(3.6)确定晶格振动谱的实验方法.pdf
- 《固体物理学》课程教学资源(讲义)第三章 晶格振动与晶体的热学性质(3.5)离子晶体的长光学波.pdf
- 《固体物理学导论》课程PPT教学课件:第五章(声子Ⅱ)(热学性质).ppt
- 《固体物理学导论》课程PPT教学课件:第六章 自由电子费米气体(金属自由电子论).ppt
- 《固体物理学导论》课程PPT教学课件:第七章 能带Ⅰ.ppt
- 《固体物理学导论》课程PPT教学课件:第八章 能带Ⅱ.ppt
- 《固体物理学导论》课程PPT教学课件:第九章 金属费米面.ppt
- 《普通物理学》课程教学资源(参考资料)我和杨振宁.doc
- 《普通物理学》课程教学资源(参考资料)贝克勒尔最离奇的一次科学发现.doc
- 《普通物理学》课程教学资源(参考资料)爱因斯坦之后物理学.doc
- 《普通物理学》课程教学资源(参考资料)25颗行星.doc
- 《普通物理学》课程教学资源(参考资料)constraint on cano us magnetism.pdf
- 《普通物理学》课程教学资源(参考资料)Radiation from a Uniformly Accelerated Charge.pdf
- 《普通物理学》课程教学资源(参考资料)Radiation from a Charge in a Gravitational Field Amos Harpaz Noam Soker.pdf
- 《普通物理学》课程教学资源(参考资料)十大科学进展.doc
- 《普通物理学》课程教学资源(参考资料)Bikini Atoll Reference Facts RUSSIA.doc
- 《普通物理学》课程教学资源(参考资料)Evicting Einstein.doc
- 《普通物理学》课程教学资源(参考资料)FermionicCondensation.pdf
- 《普通物理学》课程教学资源(参考资料)第一章 文献.doc
- 《普通物理学》课程教学资源(参考资料)Milk Drop Coronet.doc
- 《普通物理学》课程教学资源(参考资料)SalomonBEC.pdf
- 《普通物理学》课程教学资源(参考资料)Selected Specific Heats.doc