上海交通大学:《离散数学》课程教学资源(PPT课件)第四章 平面图与图的着色

第四章平面图与图的着色 4.1平面图 。定义4.1.1 若能把图G画在一个平面上,使任何两条边都 不相交,就称G可嵌入平面,或称G是可平面图 可平面图在平面的一个嵌入称为平面图. 。如果G是可平面图,那么它的任何导出子图也是 可平面图
第四章 平面图与图的着色 4.1 平面图 l 定义 4.1.1 若能把图G画在一个平面上,使任何两条边都 不相交,就称G可嵌入平面,或称G是可平面图. 可平面图在平面的一个嵌入称为平面图. l 如果G是可平面图,那么它的任何导出子图也是 可平面图

平面图 定义4.1.2 设G是一个平面图,由它的若干条边所构成的 一 个区域内如果不含任何结点及边,就称该区域 为G的一个面或域.包围这个域的诸边称为该域 的边界. 为了讨论方便,我们把平面图G外边的无限区域 称为无限域,其他的域都叫做内部域.如果两个 域有共同的边界,就说它们是相邻的,否则是 不相邻的.如果e不是割边,它一定是某两个域的 共同边界
平面图 l 定义 4.1.2 设G是一个平面图,由它的若干条边所构成的一 个区域内如果不含任何结点及边,就称该区域 为G的一个面或域.包围这个域的诸边称为该域 的边界. l 为了讨论方便,我们把平面图G外边的无限区域 称为无限域,其他的域都叫做内部域.如果两个 域有共同的边界,就说它们是相邻的,否则是 不相邻的.如果e不是割边,它一定是某两个域的 共同边界

平面图 。定理4.1.1 设G是平面连通图,则G的域的数目是 d=m-n+2. 证明:G是连通图,有支撑树T,它包含n-1条边, 不产生回路,因此对T来说只有一个无限域.由于 G是平面图,每加入一条余树边,它一定不与其 他边相交,也就是说一定是跨在某个域内部,把 该区域分成两部分.这样,加入G的m-n+1条余树 边,就生成了m-n+2个域
平面图 l 定理 4.1.1 设G是平面连通图,则G的域的数目是 d = m – n + 2. 证明:G是连通图,有支撑树T,它包含n-1条边, 不产生回路,因此对T来说只有一个无限域.由于 G是平面图,每加入一条余树边,它一定不与其 他边相交,也就是说一定是跨在某个域内部,把 该区域分成两部分.这样,加入G的m-n+1条余树 边,就生成了m-n+2个域

平面图 。推论4.1.1 若平面图G有k个连通支,则 n-m+d=k-1. 。推论4.1.2 对一般平面图G,恒有 n-m+d>=2
平面图 l 推论 4.1.1 若平面图G有k个连通支,则 n – m + d = k – 1. l 推论 4.1.2 对一般平面图G,恒有 n – m + d >= 2

平面图 。定理4.1.2 设平面连通图G没有割边,且每个域的边界数至 少是t,则 m=m-n+2, 即,m<=t*(n-2)1(t-2)
平面图 l 定理 4.1.2 设平面连通图G没有割边,且每个域的边界数至 少是t,则 m = m - n + 2, 即, m <= t * (n - 2) / (t – 2)

4.3非平面图 如果图G不能嵌入平面,满足任意两边只能在 结点处相交,那么G就称为非平面图 。这样,按平面性质进行划分,图G分为两大类:可 平面图和非平面图
4.3 非平面图 l 如果图G不能嵌入平面,满足任意两边只能在 结点处相交,那么G就称为非平面图 l 这样,按平面性质进行划分,图G分为两大类:可 平面图和非平面图

非平面图 。定理4.3.1 K是非平面图, 证明:在K.中,n=5,m=10.如果它是可平面图,应 该有m<=3n-6.而此时3n-6=9,矛盾. ● 定理4.3.2 K.是非平面图 证明:假定K3是可平面图,由于n=6,m=9.由欧 拉公式,d=5.但G中没有K,子图,因此4d<=2m, 亦即20<=18,矛盾
非平面图 l 定理 4.3.1 是非平面图. 证明:在 中,n=5,m=10.如果它是可平面图,应 该有m<=3n-6.而此时3n-6=9,矛盾. l 定理 4.3.2 是非平面图. 证明:假定 是可平面图,由于n= 6,m=9.由欧 拉公式,d=5.但G中没有 子图,因此4d<=2m, 亦即20<=18,矛盾. K5 K5 K3,3 K3 K3,3

非平面图 。约定K和K3分别记为和2图. 。定义4.3.1 在K四和2图上任意任意增加一些度为2的结点之后 得到的图象为K四型和K2型图,统称为K型图 。定理4.3.3 G是可平面图的充要条件是G不存在K型图
非平面图 l 约定 和 分别记为 和 图. l 定义 4.3.1 在 和 图上任意任意增加一些度为2的结点之后 得到的图象为 型和 型图,统称为K型图. l 定理 4.3.3 G是可平面图的充要条件是G不存在K型图. K5 K3,3 (1) K (2) K (1) K (2) K (1) K (2) K

4.5对偶图 定义4.5.1 满足如下条件的图G*称为G的对偶图. 1.G中每个确定的域内设置一个结点y. 2. 对域f和f的共同边界ek,有一条边e=(%,y)∈E(G), 并与ek相交一次. 3. 若e处于域之内,则侧v有一自环ek与e相交一次
4.5 对偶图 l 定义 4.5.1 满足如下条件的图G*称为G的对偶图. 1. G中每个确定的域 内设置一个结点 . 2. 对域 和 的共同边界 ,有一条边 , 并与 相交一次. 3. 若 处于域 之内,则 有一自环 与 相交一次. i f j f * i v k e ( , ) ( ) * * * ek vi vj E G * k e i f k e k e i f * i v k e

对偶图 。性质4.5.1 如果G是平面图,G一定有对偶图G*,而且G*是 唯一的.由D过程即可得证 ●性质4.5.2 G*是连通图 在平面G里,每个域都存在相邻的域,而且对G 的任何部分域来说,都存在与它们之中某个域 相邻的域这样由对偶图的定义可知G*连通
对偶图 l 性质 4.5.1 如果G是平面图,G一定有对偶图G* ,而且G*是 唯一的. 由D过程即可得证. l 性质 4.5.2 G*是连通图. 在平面G里,每个域f都存在相邻的域,而且对G 的任何部分域来说,都存在与它们之中某个域 相邻的域.这样由对偶图的定义可知G *连通
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《离散数学》课程教学资源(PPT课件)命题逻辑的推理.pdf
- 上海交通大学:《离散数学》课程教学资源(PPT课件)Introduction(主讲:陈玉泉).ppt
- 上海交通大学:《离散数学》课程教学资源(PPT课件)第5章 谓词逻辑的等值和推理演算.ppt
- 上海交通大学:《离散数学》课程教学资源(PPT课件)第二章 命题逻辑的等值和推理演算.ppt
- 上海交通大学:《离散数学》课程教学资源(PPT课件)第五章 树及二叉树 Algorithms and DataStrucstures.ppt
- 上海交通大学:《离散数学》课程教学资源(PPT课件)第七章 图.ppt
- 上海交通大学:《离散数学》课程教学资源(试卷习题)历届考试试题_试卷(A卷)答案.doc
- 上海交通大学:《离散数学》课程教学资源(试卷习题)历届考试试题_试卷(A卷)试卷.doc
- 上海交通大学:《离散数学》课程教学资源(讲义)第五章 谓词逻辑的等值和推理演算.pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)第二章 题逻辑的等值与推理演算.pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)第一章 命题逻辑的基本概念.pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)第一章 命题逻辑的基本概念.pdf
- 清华大学计算机系列教材:《离散数学——数理逻辑与集合论》教学资源(石纯一、王家廞).pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)图论——第二章 道路与回路.pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)图论——第三章 树.pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)图论——第一章 图的基本概念.pdf
- 《离散数学》教学资源(图论与代数系统)PDF电子教学资料.pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)第四章 谓词逻辑的基本概念.pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)第五章 谓词逻辑的等值和推理演算.pdf
- 上海交通大学:《离散数学》课程教学资源(讲义)第二章 命题逻辑的等值与推理.pdf
- 《离散数学》课程教学资源(线性代数 linear algebra)英文教材PDF电子版.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_ILOG实验指导_ILOG ODMS上机实验指导.ppt
- 上海交通大学:《线性规划与非线性规划》教学资源_ILOG实验指导_优化软件ILOG_OPL.ppt
- 上海交通大学:《线性规划与非线性规划》教学资源_ILOG实验指导_接受实验报告邮箱地址.pptx
- 上海交通大学:《线性规划与非线性规划》教学资源_ILOG实验指导_注册激活我们的ILOG方法.pptx
- 上海交通大学:《线性规划与非线性规划》教学资源_ILOG实验指导_运筹学实验指导书(2012-10).doc
- 上海交通大学:《线性规划与非线性规划》教学资源_Matlab优化函数_linprog.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_Matlab优化函数_MATLAB初步_优化2003.doc
- 上海交通大学:《线性规划与非线性规划》教学资源_Matlab优化函数_NLP-ex.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_非线性规划、无约束问题.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第1章 线性规划与单纯形法 第1节 线性规划问题及其数学模型.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第1章 线性规划与单纯形法 第2节 线性规划问题的几何意义.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第1章 线性规划与单纯形法 第3节 单纯形法.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第1章 线性规划与单纯形法 第4节 单纯形法的计算步骤.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第1章 线性规划与单纯形法 第5节 单纯形法的进一步讨论.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第1章 线性规划与单纯形法 第6节 应用举例.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第2章 对偶理论和灵敏度分析 第1节 单纯形法的矩阵描述.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第2章 对偶理论和灵敏度分析 第3节 对偶问题的提出.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第2章 对偶理论和灵敏度分析 第4节 线性规划的对偶理论.pdf
- 上海交通大学:《线性规划与非线性规划》教学资源_第2章 对偶理论和灵敏度分析 第5节 对偶问题的经济解释——影子价格 第6节 对偶单纯形法.pdf