上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 43-44_Vapor-compression refrigeration, Heat pump systems

上游充通大¥ SHANGHAI JIAO TONG UNIVERSITY a Engineering Thermodynamics I Lecture 43-44 Cengel_Chapter 11 Refrigeration Cycles Spring,5/11/2018 Prof.,Dr.Yonghua HUANG 强 是 唱目e http://cc.sjtu.edu.cn/G2S/site/thermo.html SHANG ERSITY
Engineering Thermodynamics I Lecture 43‐44 Spring, 5/11/2018 Prof., Dr. Yonghua HUANG Cengel_ Chapter 11 Refrigeration Cycles http://cc.sjtu.edu.cn/G2S/site/thermo.html

Carnot Refrigeration Cycle Warm region at TH Qout Practical? UUUT 3 Condenser TH Turbine Compressor Tc Evaporator mm b Cold region atTc之gin Coefficient of Performance B area 1-a-b-4-1 Tc(sa-Sp) 2in/m area 1-2-3-4-1 (TH -Tc)(Sa -Sp) Bmax Te We/m-W/mn TH-Tc Represents the maximum theoretical coefficient of performance of any refrigeration cycle operating between regions at Tc and TH. 上游充通大¥ May11,2018 2 HANGHAI HAO TONG LINIVERSITY
May 11, 2018 2 Carnot Refrigeration Cycle Practical? Coefficient of Performance β Represents the maximum theoretical coefficient of performance of any refrigeration cycle operating between regions at T C and T H. ?

Departures from the Carnot Cycle ·Limited△T. 1'→2' Compression liquid-vapor mixture.Wet compression. Most compressors handle vapor only.Dry compression. (Expansion)Turbine T Condenser 2' temperature,TH TH Throttling valve Temperature of warm region,TH Temperature of cold 0 T region,Tc savings in W initial and Evaporator temperature,Te maintenance costs. b a 上游充通大¥ May11,2018 3 SHANGHA BAO TONG LINIERSITY
May 11, 2018 3 Departures from the Carnot Cycle • Limited ∆T. • Compression liquid–vapor mixture. Wet compression. Most compressors handle vapor only. Dry compression. savings in initial and maintenance costs. (Expansion) Turbine Throttling valve W 0 1’2’

Vapor-compression refrigeration cycle ●Evaporator: Ci=hha m Qin-refrigeration capacity.(kW). Alternative unit:ton of refrigeration,211 kJ/min. i We Compressor =h2-hi m------小 unuut Condenser ●Condenser VExpansion Compressor =h2-h3! valve i_m Evaporator m ●Throttling process Saturated or superheated vapor 2m 上海文①大学 May11,2018 4 SHANGHAI BAO TONG LINIVERSITY
May 11, 2018 4 Vapor ‐compression refrigeration cycle

Working substance:p-h diagram 4000 3000 2000 R134a Tcond:A0-55C ressure 198 ratio 600 500 2.0-3.0 LLL100LOC00bo06066600 300 200 0900 Enthalpy [kJ/kg] x=0.10 00 030 040 050 060 0,70 0.80 40 =0.20 040 0.50 50 2--100 120 140 160T 130 200220 300 150-250W △h≈120~150k/kg 20020 T△h≈2535k/kg 三im,△h WFm,△h/ comp,e/ ←≈65% 3.5-6.0kg/hr no.is 50-80W 上游充通大率 3.0-5.0 compe May11,2018 5 SHANGHA BAO TONG LINIERSITY
May 11, 2018 5 comp,e evap,r COP W Q MSRS 150‐250 W Enthalpy [kJ/kg] Pressure ratio 2.0 ‐3.0 h 120~150 kJ/kg Qevap ,r m r h Tevap: 10 ‐25 C Tcond: 40 ‐55 C h 25~35 kJ/kg r comp,e o,is m h W 65% 3.5‐6.0 kg/hr 50 ‐80 W 3.0 ‐5.0 R134a Working substance: p‐h diagram

Cycle Analysis Condenser 3 2 Compressor Throttling Valve 成 4 1 Evaporator T-s diagram? subcooling Q p-h diagram? evap TA △Tc 2 P Tcond 3 Pcond 女T Pevap 4 superheat:△Th h 上游充通大率 May11,2018 6 SHANGHA BAO TONG LINIERSITY
May 11, 2018 6 Cycle Analysis P h 3 2 4 1 pcond pevap s T 2 1 3 4 Tcond Tevap T H T L subcooling Tsc superheat: Tsh Compressor Throttling Valve Condenser 1 3 2 4 Evaporator W Qcond Q evap T‐s diagram? p‐h diagram?

Cycle Analysis Typical Assumptions specified evaporating(Tevap)and condensing (Tcond) temperatures specified superheat entering the compressor specified subcooling leaving the condenser constant pressure throughout heat exchangers negligible kinetic and potential energy changes for all components adiabatic throttling valve specified isentropic efficiency for compressor adiabatic compressor 上游充通大率 May11,2018 7 SHANGHAI BAO TONG LINIERSITY
May 11, 2018 7 Cycle Analysis Typical Assumptions • specified evaporating ( Tevap) and condensing ( Tcond) temperatures • specified superheat entering the compressor • specified subcooling leaving the condenser • constant pressure throughout heat exchangers • negligible kinetic and potential energy changes for all components • adiabatic throttling valve • specified isentropic efficiency for compressor • adiabatic compressor

Cycle Analysis Compressor Inlet State P1=Pevap h1=h (Tevap+ATsh,Pevap) Compressor Outlet State P2 =Pcond TA isentropic specific work Tcond h2 =h+(h2sh) isentropic efficiency S h2s=h(p2,S2=S1) 上游充通大率 May11,2018 8 SHANGHAI BAO TONG LINIERSITY
May 11, 2018 8 Cycle Analysis Compressor Inlet State p 1 = pevap h 1 = h (Tevap + Tsh , pevap ) Compressor Outlet State p 2 = pcond h2s = h (p 2 , s 2 = s 1 ) isentropic specific work 2s 1 2 1 s isentropic efficiency (h h ) h h T s 2 Tcond Tevap p 2 1 2s

Cycle Analysis Condenser Outlet State P 3 P3=Pcond Pcond h3=h (Tcond+ATsc,Pcond) L negative Pevap Evaporator Inlet State p4 =Pevap h4=h3 上游充通大率 May11,2018 9 SHANGHAI BAO TONG LINIERSITY
May 11, 2018 9 Cycle Analysis Condenser Outlet State p 3 = pcond h 3 = h (Tcond + Tsc , pcond ) Evaporator Inlet State p 4 = pevap h 4 = h 3 P h 3 4 Pcond negative Pevap

Cycle Analysis Coefficient of Performance P refrigerating effect 3 Pcond COP = h1-h4 五2-九 Pevap 4 specific work h Volumetric Capacity refrigerating effect indicator of the compressor h1-h4 displacement requirement compressor inlet specific volume 上游充通大率 May11,2018 10 SHANGHAI BAO TONG LINIERSITY
May 11, 2018 10 Cycle Analysis Coefficient of Performance Volumetric Capacity P h 3 2 4 1 pcond pevap q = v refrigerating effect compressor inlet specific volume h h v 1 4 1 refrigerating effect 1 4 2 1 specific work COP = h h h h indicator of the compressor displacement requirement
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 41-42_superheat and reaheat.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 39-40_vapor power cycles.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 38_Exergy of CV systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 37_Concept of exergy and apply to CM systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 36_Heat transfer and Work of internal reversible, ss flow.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 35_Isentropic processes, Isentropic efficiencies.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 34_Entropy balance to open systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 33_Entropy increase principle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 32_Internally reversible processes, Closed system entropy balance.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 31_Retrieve entropy data.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 30_Clausius inequality and Entropy.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 29_Carnot Cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 27-28_Applying 2nd law to thermodynamic cycles, Maximum performance.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 23-24_Introducing 2nd law, concept of irreversibilities.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 22_Transient analysis of Energy.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 20-21_Illustrations_3 Heat exchangers, throttling devices, System integration.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 19_Illustrations_2 Compressors, pumps.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 18_Illustrations_1 Nozzles, diffusers, turbines.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 17_Control volume analysis - energy conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 16_Control volume analysis - mass conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 45_Air standard cycle, internal combustion engines, Otto cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 46_Diesel cycle and dual cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 47_Compressor, compression with intercooling.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 48_Review and Final Exam.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 01-02_Course Introduction-web.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 03-04_Concepts.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 05-06_Energy, work, heat transfer.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 07-08_Energy balance for close system and cycles.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 09-10_Substance, property and phase.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 11_Retrieving pvt properties.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 12_Evaluating u, h, cp, cv properties.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 13_Equation of state and ideal gas model.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 14_cv, cp, Δu, Δh of ideal gas and applied to close system.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 15_Polytropic process.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 16_Control volume analysis - mass conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 17_Control volume analysis - energy conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 18_Illustrations_1 Nozzles, diffusers, turbines.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 19_Illustrations_2 Compressors, pumps.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 20-21_Illustrations_3 Heat exchangers, throttling devices, System integration.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 22_Transient analysis of Energy.pdf