上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第六章 点估计 6.2 极大似然估计

§6.2极大似然估计 极大似然估计法是求估计的另一种方法。它最早由高斯提出。后来为费歇在1912年的文章 中重新提出,并且证明了这个方法 一些性质。极大似然估计龙 名称也是费歇 的。这是 一种上前仍然得到广泛应用的方法。它是建立在极大似然原理的基础上的一个统计方法,极 大似然原理的直观想法是:一个随机试验如有若干个可能的结果A,B,C,。若在一次 试验中,结果A出现,则一般认为试验条件对A出现有利,也即A出现的概率很大。我 们来看一个例子。(例题略) 下面我们对连续型与离散型母体两种情形阐述极大似然估计。 设51,52,…,5n为取自具有概率函数{f(x):0∈⊙}的母体5的一个 子样。子样51,52,…,5n的联合概率函数在5:取已知观测值X,1,n时 的值f(x:f(x;)…xn:)是8的函数。我们用L(0)=L(0:X1,…,Xn) 表示,称作这个子样的似然函数。于是 L(0)=L(0:x,…,xn)=fx:0)fx2;0)…fxn0)(68) 如果是离散型母体,L(0:X1,…,Xn)给出观测到(X1,X2,…,Xm 的概率。因此,可以把L(O:X1,…,Xn)看成为了观测到(X,,X2,…,Xn) 时出现什么样日的可能性的一个测度。所以我们只要寻找这样的观测值(X,,X2,·, Xn)的函数日=日(X1,…,Xn),以日代日使 (6.9) 成立。满足(6.9)式的0(X1,…,Xn)就是最可能产生X,…,Xn的参数0的 值。我们称0(X1,…,Xn)为参数0的极大似然估计值,其相应的统计量52…,5) 称作参数O的极大似然估计量。 如果5是连续型,f(x;),日∈中表示密度函数。于是子样(5,…,5n)落入点 X1…,Xm)的邻城内的概率为门f,8)A,同样是的函数。既然(X1…, Xm)在一次抽样中出现,当然可以认为子样(5,…,5)落在(X1,…,X,)的邻 域内的概率达到最大。所以我们只要找出使∏(x,:O)△x,达到最大的0的值0 (X,,…,Xn)。由于△x,是不依赖于日的增量,我们也只须求出使得
§6.2 极大似然估计 极大似然估计法是求估计的另一种方法。它最早由高斯提出。后来为费歇在 1912 年的文章 中重新提出,并且证明了这个方法的一些性质。极大似然估计这一名称也是费歇给的。这是 一种上前仍然得到广泛应用的方法。它是建立在极大似然原理的基础上的一个统计方法,极 大似然原理的直观想法是:一个随机试验如有若干个可能的结果 A,B,C,…。若在一次 试验中,结果 A 出现,则一般认为试验条件对 A 出现有利,也即 A 出现的概率很大。我 们来看一个例子。(例题略) 下面我们对连续型与离散型母体两种情形阐述极大似然估计。 设 1 , 2 ,…, n 为取自具有概率函数 f (x;): 的母体 的一个 子样。子样 1 , 2 ,…, n 的联合概率函数在 i 取已知观测值 x i ,i=1,…n 时 的值 ( ; ) f x1 ( ; ) f x2 … ( ;) n f x 是 的函数。我们用 L( )= L( ;x 1 ,… ,x n ) 表示,称作这个子样的似然函数。于是 L( )= L( ;x 1 ,… ,x n )= ( ; ) f x1 ( ; ) f x2 … ( ;) n f x (6.8) 如果是离散型母体,L( ;x 1 ,… ,x n )给出观测到(x 1 ,x 2 ,… ,x n ) 的概率。因此,可以把 L( ;x 1 ,… ,x n )看成为了观测到(x 1 ,x 2 ,… ,x n ) 时出现什么样 的可能性的一个测度。所以我们只要寻找这样的观测值(x 1 ,x 2 ,… , x n )的函数 i = i (x 1 ,… ,x n ),以 代 使 L( ;x 1 ,… ,x n )= sup L( ;x 1 ,… ,x n ) (6.9) 成立。满足(6.9)式的 (x 1 ,… ,x n )就是最可能产生 x 1 ,… ,x n 的参数 的 值。我们称 (x 1 ,… ,x n )为参数 的极大似然估计值,其相应的统计量 ( , ) 1, n 称作参数 的极大似然估计量。 如果 是连续型, ( ; ) f x1 , ∈ 表示密度函数。于是子样 ( , ) 1, n 落入点 (x 1 ,… ,x n )的邻域内的概率为 i n i i f x x =1 ( ; ) ,同样是 的函数。既然(x 1 ,… , x n )在一次抽样中出现,当然可以认为子样 ( , ) 1, n 落在(x 1 ,… ,x n )的邻 域内的概率达到最大。所以我们只要找出使 i n i i f x x =1 ( ; ) 达到最大的 的值 (x 1 ,… ,x n )。由于 i x 是不依赖于 的增量,我们也只须求出使得

L(0:x1…,Xn)=fx,0Ax 达到最大值的,便可得到极大似然估计。综上所述知道,连续型母体的参数的极大似然估计 同样可以用(6.8)与(6.9)两式表示。 由于mx是x的单调增函数,使 L0(X1…,Xn)=BmL(X1,,Xm) (6.10) 成立的日也使(6.9)成立,所以有时我们只要从(6.10)中求石就好了。(例题略) 极大似然估计有一简单而有用的性质。 性质设0为fx:0)中参数0的极大似然估计,并且函数u=u(O)有反函数0 0(u),则i=u(0)是0)的极大似然估计。这里0∈Φ,u为u(0)的值域。(证明略) 极大似然估计量还有一个重要性质一渐近正态性,这对以后在大子样情形求参数的区 间估计和进行假设检验时很有用。杜克首先提出这一性质的证明。下面我们对连续型随机变 量以定理的形式叙述这一性质。对离散型随机变量,只要以求和号代积分号,便可得到类似 的定理。 定理6.1设随机变量5具有密度函数f(x,),未知参数日∈中,中为非退化区 间,假定 ①对于任何一个E中和任一个数x偏号数be,06g和6gI存在 ∂0 081 a81 (2)对于中中每一个0值,不等式 larl fF.(). 'f <F,() a03 (6.19) 成立,其中函数F,(x),F,(x)在整个数轴上(-,0)可积,而函数F,(x)满足不等 式 F(x)f(x;0d<M (6.20) 其中M与0无关: (3)对于中中每一个0, E2g-()}f0达<0 (6.21) 于是若分布参数日的未知真值日。为中的一个内点,则方程 alogL- a0
L( ;x 1 ,… ,x n )= i n i i f x x =1 ( ; ) 达到最大值的,便可得到极大似然估计。综上所述知道,连续型母体的参数的极大似然估计 同样可以用(6.8)与(6.9)两式表示。 由于 lnx 是 x 的单调增函数,使 lnL (x 1 ,… ,x n )= sup lnL(x 1 ,… ,x n ) (6.10) 成立的 也使(6.9)成立,所以有时我们只要从(6.10)中求 就好了。(例题略) 极大似然估计有一简单而有用的性质。 性质 设 为 ( ) f x1; 中参数 的极大似然估计,并且函数 u=u( )具有反函数 = (u),则 u = u ( )是 u( )的极大似然估计。这里 ∈ ,u 为 u( )的值域。(证明略) 极大似然估计量还有一个重要性质—渐近正态性,这对以后在大子样情形求参数的区 间估计和进行假设检验时很有用。杜克首先提出这一性质的证明。下面我们对连续型随机变 量以定理的形式叙述这一性质。对离散型随机变量,只要以求和号代积分号,便可得到类似 的定理。 定理 6.1 设随机变量 具有密度函数 f (x, ) ,未知参数 ∈ , 为非退化区 间,假定 (1)对于任何一个 ∈ 和任一个数 x 偏导数 log f , 2 2 log f 和 3 3 log f 存在; (2)对于 中每一个 值,不等式 ( ) 1 F x f , ( ) 2 2 2 F x f , ( ) 3 3 3 F x f (6.19) 成立,其中函数 F ( ) 1 x ,F ( ) 2 x 在整个数轴上(−, )可积,而函数 F ( ) 3 x 满足不等 式 F x f x; dx M − ( ) ( ) 3 (6.20) 其中 M 与 无关; (3)对于 中每一个 , 0<E[ 2 ) log ( f ]= − f x; dx f ) ( ) log ( 2 (6.21) 于是若分布参数 的未知真值 0 为 的一个内点,则方程 log L =0

有一个解0存在,当时n→0,9广(5,,5n)”)日。,且8*渐近地服从 正态分布 1 0o, (6.22) aog工y'19= a0 这一定理向我们指出似然方程有一个根日依概率收敛于待估计的参数日。,并且渐近地趋 向正态分布(6.22),由于以上这些优良性质,极大似然估计法是一种应用很广的估计方法。 但必须知道母体概率函数,而且有时不易救出方程的解
有一个解 存在,当时 n → , ( , ) 1 , n ⎯⎯→P 0 ,且 渐近地服从 正态分布 N = 0 2 0 ) ] log [( 1 f nE , (6.22) 这一定理向我们指出似然方程有一个根 依概率收敛于待估计的参数 0 ,并且渐近地趋 向正态分布(6.22),由于以上这些优良性质,极大似然估计法是一种应用很广的估计方法。 但必须知道母体概率函数,而且有时不易救出方程的解
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第六章 点估计 6.1 矩法估计.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第五章 数理统计的基本概念 5.3 次序统计量及其分布.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第五章 数理统计的基本概念 5.2 统计量及其分布.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第五章 数理统计的基本概念 5.1 母体与子样、经验分布函数.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第四章 大数定律与中心极限定理 4.3 中心极限定理.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第四章 大数定律与中心极限定理 4.2 随机变量序列的两种收敛性.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第四章 大数定律与中心极限定理 4.1 大数定理.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第三章 连续形型随机变量 3.6 条件分布函数与条件期望、回归与第二类回归.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第三章 连续形型随机变量 3.5 随机变量的数字特征、契贝晓夫有等式.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第三章 连续形型随机变量 3.4 随机变量函数的分布.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第三章 连续形型随机变量 3.3 多维随机变量及其分布.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第三章 连续形型随机变量 3.2 连续型随机变量.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第三章 连续形型随机变量 3.1 随机变量及分布函数.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第二章 离散型随机变量 2.6 条件分布与条件数学期望.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第二章 离散型随机变量 2.5 方差的定义及性质.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第二章 离散型随机变量 2.4 数学期望的定义及性质.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第二章 离散型随机变量 2.3 随机变量函数的分布列.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第二章 离散型随机变量 2.2 多维随机变量,联合分布列和边际分布列.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第二章 离散型随机变量 2.1 一维随机变量及分布.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第一章 事件与概率 1.7 贝努里概型.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第六章 点估计 6.3 罗—克拉美不等式.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第六章 点估计 6.4 充分统计量.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第六章 点估计 6.5 罗—勃拉克维尔定理和一致最小方差无偏估计.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第七章 假设检验 7.1 假设检验的基本思想和概念.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第七章 假设检验 7.2 参数假设检验.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第七章 假设检验 7.3 正态母体参数的置信区间.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第七章 假设检验 7.4 非参数假设检验.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第八章 方差分析和回归分析 8.1 方差分析.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(电子教案)第八章 方差分析和回归分析 8.2 线性回归分析的数学模型.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(试卷习题)01数学本科概率论试卷A卷.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(试卷习题)01数学本科概率论试卷B卷.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(试卷习题)01数本概率论A卷答案.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(试卷习题)01数本概率论B卷答案.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(试卷习题)02数学本科概率论试卷A卷.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(试卷习题)02数本概率A卷答案.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(试卷习题)02数学本科概率论试卷B卷.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(试卷习题)02数本概率B卷答案.doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(学习指导)概率的定义及其确定方法(鞋子配对问题).ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(学习指导)三大统计分布.ppt
- 上海交通大学:《概率论与数理统计》课程教学资源(学习指导)第一章 随机事件及其概率.pdf