麻省理工大学:《Systems Biology》Alternative views on gradient sensing

Alternative views on gradient sensing Postma and van hastert. 'a diffusion-translocation model for gradient sensing by chemotactic cells Biophys.J.81,1314(2001) Levchenko and Iglesias. Models of eukaryotic gradient sensing: applications to chemotaxis of amoeba and neutrophils Biophys.J.82,50(2002) Main point how to prevent cells to polarize irreversibly?
Alternative views on gradient sensing: - Postma and van Haastert. ‘A diffusion-translocation model for gradient sensing by chemotactic cells.’ Biophys. J. 81, 1314 (2001). - Levchenko and Iglesias. ‘Models of eukaryotic gradient sensing: applications to chemotaxis of amoeba and neutrophils’ Biophys. J. 82, 50 (2002). Main point: - how to prevent cells to polarize ‘inreversibly’? 1

dm=dm omk, m+p Dm-1 umts (membrane protein. lipid) OX D 100 umts (cytosolic small molecule) For a second messenger to establish and maintain a Images removed due to copyright considerations See Postma. M. and P.j. van hastert gradient the dispersion a diffusion-translocation model for gradient sensing rangeλ should be smaller by chemotactic cells. "Biophys J.81, no. 3(Sep, 2001): 1314-23. than cell size k
k m P x m D dt dm m − + ∂ ∂ = 2 −1 2 Dm ~ 1 µm2s-1 (membrane protein. lipid) Dm ~ 100 µm2s-1 (cytosolic small molecule) For a second messenger to establish and maintain a gradient the dispersion range λ should be smaller than cell size Images removed due to copyright considerations. See Postma, M., and P. J. Van Haastert. "A diffusion-translocation model for gradient sensing by chemotactic cells." Biophys J. 81, no. 3 (Sep, 2001): 1314-23. L m k s k Dm µ λ 10 1 1 1 1 = = = − − − 2

Second mesenger production a gradient Dm 2-km+P(x) Dm- 1 umls"(membrane protein. lipid um2s-1 x D~100 P(x)=kR-△R (cytosolic small molecule) Images removed due to copyright considerations See Postma. M. andp.j. van hastert Diffusion flattens internal A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys J.81, no. 3(Sep, 2001): 1314-23. gradient Gain is 1 ( the larger Dm the smaller the gain How to amplify
⎟⎠⎞ ⎜⎝⎛ = − ∆ − + ∂ ∂ = − r x P x k R R k m P x x m D dt dm R m * * 2 1 2 ( ) ( ) Second mesenger production in a gradient Dm ~ 1 µm2s-1 (membrane protein. lipid) Dm ~ 100 µm2s-1 (cytosolic small molecule) Diffusion flattens internal gradient Gain is < 1 (the larger Dm the smaller the gain) How to amplify ? 3 Images removed due to copyright considerations. See Postma, M., and P. J. Van Haastert. "A diffusion-translocation model for gradient sensing by chemotactic cells." Biophys J. 81, no. 3 (Sep, 2001): 1314-23

Amplification by positive feedback A. Before receptor stimulation only a small number of effectors (inactive) bound to membrane B After receptor stimulation membrane bound effectors will be stimulated to produce more phospholipid second mesengers Images removed due to copyright considerations See Postma. M. and P.J. Van hastert C Local phospholipid increase "A diffusion-translocation model for gradient sensing leads to increased translocation of by chemotactic cells. Biophys J effector molecules 81,n0.3(Sep,2001):131423 D receptor can signal to more effectors leading to even more phospholipid production and further depletion of cytosolic effector molecules m k-m+P(x)Em: effector concentration in membrane P(x)=ko+kER (x)Em(x) Ec: effector concentration in cytosol
Amplification by positive feedback 4 A. Before receptor stimulation only a small number of effectors (inactive) bound to membrane B. After receptor stimulation, membrane bound effectors will be stimulated to produce more phospholipid second mesengers C. Local phospholipid inc rease leads to increased transloc ation of effector molecules D. receptor can signal to more effectors leading to even more phospholipid production and further depletion of cytosolic effecto r molecules. E m: effector concentration in membrane E c: effector concentration in cytosol. ( ) ( ) ( ) ( ) * 2 1 2 P x k k R x E x k m P x x m D dt dm o E m m = + − + ∂ ∂ = − Images removed due to copyright considerations. See Postma, M., and P. J. Van Haastert. "A diffusion-translocation model for gradient sensing by chemotactic cells." Biophys J. 81, no. 3 (Sep, 2001): 1314-23

Images removed due to copyright considerations. See Postma, M, and P.J. Van Haastert A diffusion-translocation model for gradient sensing by chemotactic cells. "Biophys J 81,no.3(Sep,2001):131423
5 Images removed due to copyright considerations. See Postma, M., and P. J. Van Haastert. "A diffusion-translocation model for gradient sensing by chemotactic cells." Biophys J. 81, no. 3 (Sep, 2001): 1314-23

Molecules ? Image removed due to copyright considerations. See Levchenko, A, and P A Iglesias Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils Biophys J.82(1Pt1)(Jan2002):50-63 receptor binding→ G-protein activation> activation of p13K (activator)-> activation of pten (inhibitor)-> P3-R*(binding Ph domains)
Molecules ?? Image removed due to copyright considerations. See Levchenko, A., and P. A. Iglesias. "Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils." Biophys J. 82 (1 Pt 1)(Jan 2002): 50-63. receptor binding → G-protein activation → activation of PI3K (activator) → activation of PTEN (inhibitor) → P3 ~ R* (binding PH domains) 6

Perfect adaptation module R* A kp k R kall k A
Perfect adaptation module: R* A* k R k-R I* k-A kA’ kI’ R k-I 7 A I S

dR kiRThAR k-AAtksa=-k-yA+k,so k_/+k sr=k_/+k s(ltot-l) Main assumption k a&k>>ka&ki(atot >a, lto?>1r) R knⅠR+k,AR dA k A+ks k,=k, =-k11+k
( ) ( ) * ' * ' * * * ' * ' * * * * * * k I k SI k I k S I I dt dI k A k SA k A k S A A dt dA k I R k A R dt dR I I I I tot A A A A tot R R = − + = − + − = − + = − + − = − + − − − − − Main assumption: k-A & k-I >> k’A & k’I (Atot>>A*, Itot>>I*) k I k S dt dI k A k S dt dA k I R k A R dt dR I I A A R R = − + = − + = − + − − − * * * * * * I I tot A A tot k k I k k A = = ' ' 8

Steady state Image removed due to copyright considerations k R R k R 4/I+k R for the rest of the calculations ignoreXfor I and A
Steady state: R ss ss R R ss ss ss I I ss A A ss k A I k k A I R S k k I S k k A − − − + = = = * * * * * * * / / Image removed due to copyright considerations. for the rest of the calculations ignore ‘*’ for I and A ! 9

Now introduce diffusion only I diffuses, other components are local a/(x,) a1(, t) -kI(x, t)+k,s(x, t)+D at assume signal S varies linearly with S S(x)=S。+Sx no flux boundary conditions for a(0,)a/(,2) 0 ax in steady state this system can be solved analytically
Now introduce diffusion: - only I diffuses, other components are local 2 2 ( , ) ( , ) ( , ) ( , ) x I x t k I x t k S x t D t I x t I I ∂ ∂ = − + + ∂ ∂ − - assume signal S varies linearly with S S x s s x o 1 ( ) = + - no flux boundary conditions for I 0 ( 0, ) ( 1, ) = ∂ ∂ = ∂ ∂ x I t x I t in steady state,this system can be solved analytically ! 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工大学:《Systems Biology》Review L15 Turing-Gierer-Meinhardt models.pdf
- 麻省理工大学:《Systems Biology》Review Turing-Gierer-Meinhardt models.pdf
- 麻省理工大学:《Systems Biology》creation of membrane associated minD.pdf
- 麻省理工大学:《Systems Biology》Wrapping up E coli chemotaxis (L7& L8).pdf
- 麻省理工大学:《Systems Biology》Organizational Remarks:.pdf
- 麻省理工大学:《Systems Biology》L14: 14 Lectures past and 1 1 to go.pdf
- 麻省理工大学:《Systems Biology》Fine tuned model for perfect adaptation.pdf
- 麻省理工大学:《Systems Biology》Mathematical basis of stability analysis.pdf
- 麻省理工大学:《Systems Biology》Summary Lecture 3.pdf
- 麻省理工大学:《Systems Biology》Systems Biology.pdf
- 麻省理工大学:《Systems Biology》Review lecture 2 Michaelis-Menten kinetics.pdf
- 《生化武器》讲义ppt电子课件.ppt
- 华东理工大学:《发酵工程 Fermentation Engineering》课程教学资源(PPT课件讲稿)第八章 典型培养过程 第一节 基因工程菌培养.ppt
- 华东理工大学:《发酵工程 Fermentation Engineering》课程教学资源(PPT课件讲稿)第八章 典型培养过程 第二节 动物细胞培养.ppt
- 华东理工大学:《发酵工程 Fermentation Engineering》课程教学资源(PPT课件讲稿)第九章 发酵过程优化与放大概论.ppt
- 华东理工大学:《发酵工程 Fermentation Engineering》课程教学资源(PPT课件讲稿)第十章 发酵工程技术展望.ppt
- 西华大学:《微生物学》课程教学课件(PPT讲稿)第14章 传染与免疫.ppt
- 西华大学:《微生物学》课程教学课件(PPT讲稿)第11章 微生物与食品腐败变质.ppt
- 西华大学:《微生物学》课程教学课件(PPT讲稿)第10章 微生物在食品制造中的作用.ppt
- 西华大学:《微生物学》课程教学课件(PPT讲稿)第2章 纯培养和显微技术.ppt
- 麻省理工大学:《Systems Biology》Note final ps For question 2(a)the.pdf
- 麻省理工大学:《Systems Biology》I Systems Microbiology(13 Lectures.pdf
- 麻省理工大学:《Systems Biology》Systems Biology.pdf
- 生命科学概论:《人类基因组计划》讲义.ppt
- 天水师范学院:《植物分类学》课程教学资源(PPT课件)植物科属介绍(2/2).ppt
- 天水师范学院:《植物分类学》课程教学资源(PPT课件)植物科属介绍(1/2).ppt
- 《生物传感器专题》(SBA—40C型分析仪速成操作指南)讲义.ppt
- 四川农业大学:《生物化学》课程教学资源(PPT课件讲稿)第三章 酶学.ppt
- 四川农业大学:《生物化学》课程教学资源(PPT课件讲稿)第四章 维生素与辅酶.ppt
- 四川农业大学:《生物化学》课程教学资源(PPT课件讲稿)第五章 生物膜的结构与功能.ppt
- 四川农业大学:《生物化学》课程教学资源(PPT课件讲稿)第二章 核酸化学.ppt
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第一章 植物的水分生理.doc
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第二章 植物的矿质营养.doc
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第三章 植物的光合作用.doc
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第四章 植物呼吸作用.doc
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第五章 植物体内有机物的代谢.doc
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第六章 植物体内有机物的运输.doc
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第七章 细胞信号转导.doc
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第八章 植物的生长物质.doc
- 华南师范大学:《植物生理学》课程教学资源(习题与答案)第九章 光形态建成.doc