复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 10 - Chemical Equilibrium

PART 10-Chemical Equilibrium Reference: Chapter 14, 17 in textbook
PART 10 PART 10 – Chemical Equilibrium Chemical Equilibrium Reference: Chapter 14 17 in textbook Reference: Chapter 14, 17 in textbook 1

Basic Properties 1. Dynamic equilibrium eg.N2O4(g)s2N○2(g) At equilibrium, Vforward = backward showing the system reaches an equilibrium state Q How to draw the graph by v-t? Xm0.6
Basic Properties z 1. Dynamic Equilibrium e.g. N 2 O 4 (g) ' 2 NO 2 (g) At ilib i At equilib rium, vforward = vbackward Æ showin gy q the s ystem reaches an e quilibrium state. Q: How to draw the graph by v ~ t? 2

Basic Properties 2. System reaches an equilibrium state spontaneously All the equilibrium states are under a set of conditions, and can be affected when conditions change 3. It does not matter whether the system starts from reactant side or product side e.g.N2O4(9)s2NO2(9) Case 1: Starting from 1 mol N2O4(g) Case 2: Starting from 2 mol NO2(g)
Basic Properties z 2. Sys e eac es a equ b u s a e t em reac hes an equili bri um s t a t e spontaneously All th ilib i t t d t f diti All the equilib rium s t a tes are un der a se t o f conditions, and can be affected when conditions change. z 3. It does NOT matter whether the system starts from reactant side or product side. eg N . . N O (g) ' 2 NO (g) 2 O 4 (g) ' 2 NO 2 (g) Case 1: Starting from 1 mol N 2 O 4 (g) Case 2: Starting from 2 mol NO 2 (g) 3

Basic Properties 4. Driving force The coexistence of two driving forces leads to an equilibrium e.g. n2O4 (g)# 2 NO2(g) Reduced energy( enthalpy):2N○2(g)→N2O4(g) Increased entropy: n2O4(9)>2 NO2(g) At Equilibrium:△G=0,(.e.△H=T·△S)
Basic Properties z 4 Dri ing Force 4. Dri ving Force The coexistence of two driving forces leads to an equilibrium. e.g. N 2 O 4 (g) ' 2 NO 2 (g) Reduced energy (enthalpy): 2 NO 2 (g) Æ N 2 O 4 Reduced energy (enthalpy): 2 NO (g) 2 (g) Æ N 2 O 4 (g) Increased entropy: N 2 O 4 (g) Æ 2 NO 2 (g) At Equilibrium: ΔG = 0, (i.e. ΔH = T • ΔS) 4

Equilibrium Constant Equilibrium Constant(K) Revisit: Kw, Ka, Kb, Ksp, Formally defined -Mass Law For a reaction aa tbb f cc+dd At equilibrium K=cc·CD)/(CAa·CB K=(Pc·P/(PAa·Pgb),(iA,B,C, D are gases) Equilibrium Constant K is only the function Of T
Equilibrium Constan t z E q () uilibrium Constant ( K ) Revisit: K w, K a, K b, Ksp, …… Formally defined – Mass Law For a reaction: a For a reaction: a A + b B ' c C + d D At equilibrium: K = (C C c • C D d) / (C A a • C B b ) K ( P c P d)/( P a P b K = ( P ) (if A B C D ) C c • P D d ) / ( PA a • P B b ), (if A, B, C, D are gases ) z Equilibrium Constant K is only the function Equilibrium Constant K is only the function of T 5

a. The representation of K should be consistent with the chemical reaction, and designated with the temperature Example: N2O4(g) 2NO2(9) 11.01 b. In a heterogeneous(multi-phase)equilibrium, K only relates to the gas pressures and solution concentrations Example: CaCO3(s) CaO(s)+ Co2(g) K =P EXample: Zn(s)+ 2 H+(aq)# Zn+(aq)+ H2(g) K=[zn2+]·P2/[H]2 6
a. The representation of K should be consistent with the a. The representation of K should be consistent with the chemical reaction, and designated with the temperature. Example: N 2 O 4 (g) ' 2 NO 2 (g) K 0 373K = 11.01 b. In a heterogeneous (multi-phase) equilibrium, K only rel t t th d l ti t ti la tes to the gas pressures an d solution concen trations. Example: CaCO 3 (s) ' CaO (s) + CO 2 (g) K = PCO2 Example: Zn (s) + 2 H + (aq ) ' Zn2+ Example: Zn (s) + 2 H (aq)+H (g) + (aq ) ' Zn2+ (aq ) + H 2 (g) K = [Zn2+] • PH2 / [H + ] 2 6

C. In(diluted)water solution, the [water] is 1 and unchanged EXample: Cr2 O,2(aq)+ H2o (# 2 Cro42(aq)+2 H*(aq) K=(CrO42]2·叶H]2)/[Cr2O2] d. For different chemical reactions K has different values N2(g)+3H2(g)s2NH3(g) 佐N2(9)+3/2H2(9)sNH3(9)Kxr=(K)2 2NH3(g)sN2(g)+3H2(g) K =1/KI 7
c. I (dil t d) t l ti th [ t ] i 1 d h d In (dil u t ed) wa ter solution, the [wa ter ] is 1 an d unc hange d. Exam ple: C r 2 O 7 2- ( a q ) + H 2O (l) ' 2 CrO 4 2- ( a q ) + 2 H + p ( a q ) 2 7 ( q ) 2 ( ) 4 ( q ) ( q ) K = ([CrO 4 2- ] 2 • [H + ] 2) / [Cr 2 O 7 2- ] d. For different chemical reactions, K has different values. N 2 (g) + 3 H 2 (g) ' 2 NH 3 N 2 (g) K T (g) + 3 H 2 (g) ' 2 NH 3 (g) K T ½ N 2 (g) + 3/2 H 2 (g) ' NH 3 (g) K T ’ = (K T )1/2 2 NH3 (g) ' N 2 (g) + 3 H 2 (g) K T ’’ = 1 / K T 7

Practice Q: For a reaction: COCI2(g)+ Co(g)+ Cl2(g) In a fixed volume container at 900 K there was some CoCl2(g)with initial pressure of 101.3 kPa. When this dissociation reaction reached equilibrium, the total pressure of the container is 189.6 kPa Calculate the equilibrium constant Solution COCl2(g) Co(g)+ CI2(g) itial 101.3 0 0 Change X X Equilibriu 101.3 (101.3-X) 1896 X=88.3 kPa K=(883)*(88.3)/(101.3-88.3)=600 8
Practice Q: For a reaction: COCl2 (g) ' CO (g) + Cl2 (g) In a fixed volume container at 900 K there was some In a fixed volume container at 900 K, there was some COCl2 (g) with initial pressure of 101.3 kPa. When this dissociation reaction reached eq, p uilibrium, the total pressure of the container is 189.6 kPa. Calculate the equilibrium constant. Solution: COCl2 (g) ' CO (g) + Cl2 (g) I iti l Initial: 101 3 0 0 101.3 0 0 Change: –x x x Equilibrium: 101.3 – x x x (101 3 – x) + x + x = 189 6 x = 88 3 kPa 8 (101.3 – x) + x + x = 189.6 x = 88.3 kPa K = (88.3) * (88.3) / (101.3 – 88.3) = 600

Equilibrium Constant&△G For an arbitrary gas reaction aa g bb(g CC(g)+ dd(g △G=c△Gc+d△G-(a△GA+b△G) △G=c△G°c+d△G°-(a△Ga+b△G°g) rt[(c In Pc+dIn pd)-(a In PA+ b In PB) sInce:c△G°c+d△G-(a△G°a+b△G°g)=△G° Therefore △G=△G+RTln[(Pc·P/(Pa·PBb)]
Equilibrium Constant & Δ G For an arbitrary gas reaction: For an arbitrary gas reaction: a A (g) + b B (g) ' c C (g) + d D (g) ΔG = c Δ G C + d Δ G D – (a Δ G A + b Δ G B ) Δ G Δ G o + d Δ G o ( Δ G o + b Δ G o Δ G = c Δ G ) o C + d Δ G o D – ( a Δ G o a + b Δ G o B ) + RT [(c ln P C + d ln P D ) – (a ln PA+ b ln P B [( )] C D ) ( A B)] since: c Δ G o C + d Δ G o D – (a Δ G o a + b Δ G o B) = Δ G o Therefore: Δ G = Δ G o + RT ln [ ( P C c • P D d)/( P a a • P B b) ] 9 Δ G Δ G RT ln [ ( P C P D ) / ( P a P B ) ]

Equilibrium Constant&△G Or in a solution reaction △G=△G°+RTin[cc·C/Ca·Cgb)] Qp Q aB AGr=AG°+ RTIn g △Gr0 Product side- Reactant side 10
Equilibrium Constant & Δ G Or in a solution reaction: ΔG = Δ G o + RT ln [ (C C c • C D d) / (C a a • C B b) ] C d C d b P B a A d D C C Q P P P P = ⋅ ⋅ b C B a A d D C C Q C C C C = ⋅ ⋅ Δ G T = Δ G T ° + RT ln Q A B A B G T G T Q Δ G T 0 Product side Æ Reactant side 10 Δ G T > 0 Product side Æ Reactant side
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 9 - Chemical Thermodynamics and Thermochemistry.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 8 - Changes in States, Colligative Properties and Phase Properties, and Phase Diagram.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 7 - Oxidation & Reduction.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 6 - Solution & Precipitate.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 5 - Acids and Bases.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 4 - Molecular Orbital Method of Chemical Bonding, and Molecular.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 3 - Chemical Bonds, Valence Bond Method, and Molecular Shapes.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 2 - Electronic Structure and the Periodic Table.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 1 - Introduction(主讲:郑耿锋).pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(教学大纲)Syllabusfor General Chemistry(I)Syllabus.doc
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第17章 胺(伯、仲、叔胺的制备方法;Hofmann降解反应及在制备伯胺的应用;胺类化合物的碱性和亲核性).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第15章 碳负离子缩合反应(5).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第15章 碳负离子缩合反应(4).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第15章 碳负离子缩合反应(3).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第15章 碳负离子缩合反应(2).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第15章 碳负离子缩合反应(1).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第14章 羧酸衍生物、酰基上的亲核取代反应(2).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第14章 羧酸衍生物、酰基上的亲核取代反应(1).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第13章 羧酸(化学性质、酸性、羟基的取代、a位的卤代、与金属有机试剂的反应、还原、脱羧、酯化反应).ppt
- 复旦大学:《有机化学A》课程教学课件(PPT课件讲稿)第11章 苯和芳香烃、芳香亲电取代反应(3).ppt
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 11 - Chemical Kinetics.pdf
- 复旦大学:《普通化学 General Chemistry》课程教学资源(课堂讲义)Chap 13 - 元素化学.pdf
- 延安大学:《物理化学》精品课程教学资源(课程实践)实验教学大纲(化学、工业分析).doc
- 延安大学:《物理化学》精品课程教学资源(课程实践)实验教学大纲(化学、工业分析).pdf
- 延安大学:《物理化学》精品课程教学资源(课程实践)实验教学大纲(应用化学).doc
- 延安大学:《物理化学》精品课程教学资源(课程实践)实验教学大纲(应用化学).pdf
- 延安大学:《物理化学》精品课程实践教学(PPT课件讲稿)实验讲座.ppt
- 延安大学:《物理化学》精品课程教学资源(教学大纲)教学大纲(化学、应用化学、工业分析).doc
- 延安大学:《物理化学》精品课程教学资源(教学大纲)教学大纲(化学工艺).doc
- 延安大学:《物理化学》精品课程教学资源(教学大纲)《胶体与界面化学》教学大纲.doc
- 延安大学:《物理化学》精品课程教学资源(教学大纲)《工业催化》教学大纲.doc
- 延安大学:《物理化学》精品课程教学资源(教学大纲)《结构化学》教学大纲.doc
- 延安大学:《物理化学》精品课程教学资源(教学大纲)《绿色化学》教学大纲.doc
- 延安大学:《物理化学》精品课程教学资源(课后习题)第一章 气体课后习题解答.doc
- 延安大学:《物理化学》精品课程教学资源(课后习题)第二章 热力学第一定律课后习题解答.doc
- 延安大学:《物理化学》精品课程教学资源(课后习题)第三章 热力学第二定理课后习题解答.doc
- 延安大学:《物理化学》精品课程教学资源(课后习题)第五章 相平衡课后习题解答.ppt
- 延安大学:《物理化学》精品课程教学资源(课后习题)第四章 多组分系统热力学及其在溶液中的应用课后习题解答.doc
- 延安大学:《物理化学》精品课程教学资源(课后习题)第七章 统计热力学基础课后习题解答.doc
- 延安大学:《物理化学》精品课程教学资源(课后习题)第八章 电解质溶液课后习题解答.doc