中国科学技术大学:数值模拟新发展(PPT讲稿)Some recent development of the numerical simulation methods for CFD

Some recent development of the numerical simulation methods for CFd Liu ruxun Dept of Math. USTC, Hefei anhui 230026, China liunx@ustc.edu.cn
Some recent development of the numerical simulation methods for CFD Liu Ruxun Dept.of Math., UST C, Hefei Anhui 230026, China liurx@ustc.edu.cn

What is Computational Fluid Dynamics(CFD)? CFD IS the systematic application of computing systems and computational solution techniques to mathematical models formulated to describe and simulate fluid dynamic phenomena Simulation is used by engineers and physicists to forecast or reconstruct the behaviour of an engineering product or physical situation under assumed or measured boundary conditions(geometry, initial states, loads, etc.) The importance simulation techniques have great developed in recent decade years 1. Research of models is the foundation [29]Quecedo M. et al, Comparison of two mathematical models for solving the dam break problems using the FEM method, Comput. Methods Appl. Mech. Engrg., 194(2005 )3984-4005 Adopted a wrong model 2. Advances in solution algorithms 3. Mathematical analysis(classic and numerical analysis, discrete mathematics) 4.comPuterScience(algorithms,codingsoftware 5. Visualization techniques Lab for Computational Fluid Dynamics May28,2004
What is Computational Fluid Dynamics (CFD) ? CFD is the systematic application of computing systems and computational solution techniques to mathematical models formulated to describe and simulate fluid dynamic phenomena. Simulation is used by engineers and physicists to forecast or reconstruct the behaviour of an engineering product or physical situation under assumed or measured boundary conditions (geometry, initial states, loads, etc.). The importance simulation techniques have great developed in recent decade years: 1.Research of models is the foundation [29] Quecedo M. et al, C omparison of two mathematical m o d els for solving the dam break probl ems using the FEM method, C o m put. Methods Appl. Mech. Engrg.,194(2005)39 8 4-40 05 Adopted a wrong m o d el!! 2.Advances in solution algorithms 3.Mathematical analysis (classic and numerical analysis, discrete mathematics) 4.Computer Science (algorithms, coding, software) 5.Visualization Techniques Lab for Computational Fluid Dynamics May 28, 2004

Content 1. Introduction 2. Dome classical methods 2-1. Donor and Acceptor 2-2. Harlow and Welch's MAC Marker and cell), PIC, FLIC 3. Leonard's qUick (quadratic upstream interpolation for convective kinetics) and Simple 2-4. van Leer's MUSCL (monotonic upstream scheme for conservation law) 2-5. Collela's PPM(piecewise parabolic method) 2-6. Harten's TVD (total variation diminishing schemes) 3. Recent development of numerical simulation method 3-1. ENo (essentially non-oscillatory schemes) and weighted ENO 3-2. FVM(finite volume methods)with unstructured meshes 3-3. Rational approximation methods, high order compact and Pade schemes 3-4 CIP (cubic interpolated propagation methods) 3-5 VOF (volume of fluid) and Level set methods for tracking moving interface 3-6. DG Discontinuous Galerkin finite element methods) 3-7 LBM ( Lattice Boltzmann method 3-8. SPH (smoothed particle hydrodynamics )and meshless methods 3-9. Software: Fleunt phoenics Star-CD, CFX, and so on
Content 1.Introduction 2.Some classical methods 2-1.Donor and Acceptor 2-2.Harlow and Welch’s MAC (Marker and cell),PIC,FLIC 2-3.Leonard’s QUICK (quadratic upstream interpolation for convective kinetics) and Simple 2-4.van Leer’s MUSCL (monotonic upstream scheme for conservation law) 2-5.Collela’s PPM (piecewise parabolic method) 2-6.Harten’s TVD (total variation diminishing schemes) 3.Recent development of numerical simulation method 3-1.ENO (essentially non-oscillatory schemes) and weighted ENO 3-2.FVM (finite volume methods) with unstructured meshes 3-3.Rational approximation methods, high order compact and Pade schemes 3-4.CIP (cubic interpolated propagation methods) 3-5.VOF (volume of fluid) and Level Set methods for tracking moving- interface 3-6.DG (Discontinuous Galerkin finite element methods) 3-7.LBM (Lattice Boltzmann method ) 3-8.SPH (smoothed particle hydrodynamics)and meshless methods. 3-9.Software:Fleunt, Phoenics,Star-CD,CFX,and so on

1 Introduction In recent years the numerical methods of subtly simulate fluid dynamic phenomena have been advanced quickly and have succeeded in various fluid dynamICS applications In the short paper, only some important and effective new approaches will be introduced. Some methods, such as moving FEM, BEM, moving grid methods, spectral method LEs. multi-scale method and so on isn 't able to be discussed
1.Introduction In recent years, the numerical methods of subtly simulate fluid dynamic phenomena have been advanced quickly and have succeeded in various fluid dynamics applications. In the short paper, only some important and effective new approaches will be introduced. Some methods, such as moving FEM, BEM, moving grid methods, spectral method, LES, multi-scale method and so on, isn’t able to be discussed

2. Some classical methods we review some classical numerical methods in order to uss recent methods and developments easily 1. Donor and Acceptor methods Consider the numerical flux scheme(8) of the Id shallow water equations in the cell 1;=[x-1/2,x, +/2 ]and the neighboring cell I +=[x +/2,x +3/2].The numerical flux F(ua)at the discontinuous joint) point x=x,+/2 can be reconstructed by judging which is the donor-or acceptor-cell between the two cells (h) F(1+2) as u m>05or i+1 (h2+gh2), -(h2+8gh2)1 asl12<0(1) The reconstruction approach is called donor-acceptor method which has obvious mechanics character
2.Some classical methods we review some classical numerical methods in order to discuss recent methods and developments easily. 2-1.Donor and Acceptor methods Consider the numerical flux scheme (8) of the 1D shallow water equations in the cell and the neighboring cell .The numerical flux at the discontinuous (joint) point can be reconstructed by judging which is the donoror acceptor-cell between the two cells (1) The reconstruction approach is called donor-acceptor method which has obvious mechanics character. 1 1/ 2 2 2 1 1 1/ 2 2 2 1/ 2 2 2 1 ( ) , ( ) , ( ) 0 0 ( ) , ( ) , i i i i i i i hu hu F U a s u o r a s u hu gh hu gh + + + + + ⎧ ⎫ ⎧ ⎫ = ⎨ ⎬ > < ⎨ ⎬ + − + ⎩ ⎭ ⎩ ⎭ 1/ 2 1/ 2 [ , ] i i i I x x = − + 1 1/ 2 3/ 2 [ , ] i i i I x x + + = + 1/ 2 ( ) F Ui+ 1 1/ 2 x x = +

Harlow&Welch's MAC(Marker and cell) PIC (particle in cell, Evan and Harlow, 1957), MAC(Marker and cell Harlow and Welch, 1965), FLIC (Fluid in cell, Gentry, Martin and Daly, 1966), ALE (Arbitrary Lagrange and euler) MAC method: Marker technique By tracking these markers based on the velocity-field of flow, we can finely numerically simulate the free surface of moving interface Tracking markers----------Lagrange -computation ax u(x, y, t) n+1 n+1 +1 +.(x(,y(O),)t dy,(t) or m=v(x,y, t) ymt=ymt+l. v(x(t),y(t), t)dt
2-2.Harlow&Welch’s MAC (Marker and cell) PIC (particle in cell,Evan and Harlow,1957),MAC (Marker and cell, Harlow and Welch,1965), FLIC (Fluid in cell, Gentry,Martin and Daly,1966), ALE (Arbitrary Lagrange and Euler). MAC method : Mmarker technique .By tracking these markers based on the velocity-field of flow, we can finely numerically simulate the freesurface of moving interface. Tracking markers----------Lagrange-computation. or (2) ( ) ( , , ) ( ) ( , , ) m m dx t u x y t dt dy t v x y t dt = = 1 1 1 1 1 1 ( ( ), ( ), ) ( ( ), ( ), ) n n n n t n n m m t t n n m m t x x u x t y t t dt y y v x t y t t dt + + + + + + = + = + ∫ ∫

B Leonard's QUICK(quadratic upstream interpolation for convective kinetics) Leonard (1979)used a three-point upstream weighted quadratic interpolation to construct the numerical flux F(Uu) at the discontinuous point (the cell interface )x=x+1/2 gU7+3U1一U1,L1>0 U,+3U-1U,L.,<0 (3) F(U1+12)=[A(U)Ul+1a2 Patanka and Spalding s SIMPLE (Semi-Implicit Method for Pressure-Linked Equation, 1972)
2-3.Leonard’s QUICK (quadratic upstream interpolation for convective kinetics) Leonard (1979) used a three-point upstreamweighted quadratic interpolation to construct the numerical flux at the discontinuous point (the cell interface) . (3) and Patanka and Spalding’s SIMPLE (Semi-Implicit Method for Pressure-Linked Equation,1972) 1/ 2 ( ) F Ui+ 1 1/ 2 x x = + 1/ 2 1/ 2 ( ) [ ( ) ] F Ui i + + = A U ⋅U 1 2 1 2 1 2 6 3 1 8 8 1 1 8 6 3 1 8 8 1 2 8 , 0 , 0 i i i i i i i i i U U U u U U U U u + − + + + + + ⎧ + − > ⎪ = ⎨ + − < ⎪⎩

4. van Leer's MUSCL(monotonic upstream scheme for conservation law) van Leer ( 1979)uses the approximations Uiy at the time level t=t,to directly reconstruct U(, tn+ndx the 2nd polynomial approximation of the integrand of above integral based on characteristics property The third order scheme has the lateral values of the cell interface x=xu12(K=3 is a third order muscl scheme) 2=U1+[(1-x)△U1+(1+x)△U (5a) U/1a2=Ul1-4(1+x)△U1+(1-x)△U In order to restrain the oscillations by inserting a flux limiter is effective strategy i.e. the scheme(5a should be replaced as (5b)
2-4.van Leer’s MUSCL (monotonic upstream scheme for conservation law) van Leer (1979) uses the approximations at the time level to directly reconstruct (4) the 2nd polynomial approximation of the integrand of above integral based on characteristics property. The third order scheme has the lateral values of the cell interface ( is a third order MUSCL scheme) (5a) In order to restrain the oscillations by inserting a flux limiter is effective strategy, i.e. the scheme (5a) should be replaced as (5b) { }n Ui i ∀ n t t = 1 1 1 ( , ) i n i n I U U x t dx x + = + ∆ ∫ 1 1/ 2 4 1 1 1/ 2 1 4 1 [(1 ) (1 ) ] [(1 ) (1 ) ] L i i i i R i i i i U U U U U U U U κ κ κ κ + − + + + = + − ∆ + + ∆ = − + ∆ + − ∆ 1 1/ 2 4 1 1 1/ 2 1 4 1 [(1 ) (1 ) ] [(1 ) (1 ) ] L i i i i R i i i i U U U U U U U U κ κ κ κ + − + + + = + − ∆ + + ∆ = − + ∆ + − ∆ 1 1/ 2 x x = + 13 κ =

2-5. Collela's PPM(piecewise parabolic method) Collela and Woodward (1984) proposed PPM by piecewise parabolic polynomial interpolation to the definition(24) For example the ppm scheme of a scalar equation will be v(x)=l11+5(41+l6(1-5) x △l1=lR;-1L lim (x) lin Im (l+l21) MUSCL van eer 1979) piecewise linear Collet Woodwar piecewise parabolic (1984) Fig. 6 The reconstruction character of left and right limit values forMUSCL and PF
2-5.Collela’s PPM (piecewise parabolic method) Collela and Woodward (1984) proposed PPM by piecewise parabolic polynomial interpolation to the definition (24). For example, the PPM scheme of a scalar equation will be (6) Fig.6 The reconstruction character of left and right limit values forMUSCL and PPM 1 2 1 1 2 2 1 1 2 2 , 6 , , , , , 1 6 , 2 , , ( ) ( (1 )), lim ( ); lim ( ) 6( ( )) i i i L i i i i i i R i L i R i x x L i x x n i i R i L i x x v x u u u x x x x u u u u u x u u x u u u u ξ ξ ξ + − − − + ↑ ↓ ⎧ − ⎪ = + ∆ + − = ≤ ≤ ⎪ ∆ ⎪ ∆ = − ⎨⎪ = = ⎪⎪ = − + ⎩ piecewise linear PPM Collela &Woodwar d (1984) piecewise parabolic MUSCL van eer (1979)

2-6. Harten's TVD(total variation diminishing schemes Harten(1983) first introduced TVD scheme including Limiter Contribution TVD character: Reconstruction: Limiter TVDT(Um)sTW(",T(")=△∑An TTheory For scalar conservation law u,+(f(u)=0, a(u)=af(u)/au Jacobian matrix (8) a scheme consistent with it can be written as -1/2 (l2-121)+D+12(l+1-l1) 9 if the following conditions are satisfied 1+1/20. D12≥0 0≤Cm2+D12s1 it is also a TVd one Monotone scheme iS TVD A TVD Scheme is monotonicity preserving
2-6.Harten’s TVD (total variation diminishing schemes) Harten (1983) first introduced TVD scheme including Limiter Contribution: TVD character; Reconstruction: Limiter TVD: (7) [Theory] For scalar conservation law , (8) a scheme consistent with it can be written as (9) if the following conditions are satisfied (0) it is also a TVD one. Monotone scheme is TVD. A TVD scheme is monotonicity preserving. 1 ( ) ( ), ( ) n n n ni i TV U TV U TV U x U + ≤ = ∆ ∑ ∆ ( ( )) 0, ( ) ( )/ t x u + f u = = a u ∂f u ∂u Jacobian matrix 1 1/ 2 1 1/ 2 1 ( ) ( ) n n n n n n i i i i i i i i u u C u u D u u + = − − − − + + + − 1/ 2 1/ 2 1/ 2 1/ 2 0, 0 0 1 i i i i C D C D + + + + ⎧ ≥ ≥ ⎨⎩ ≤ + ≤
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《工程流体力学》课程教学资源(实验讲义,共七个实验).doc
- 哈尔滨建筑大学:《变分与弹塑性力学》课程教学课件(PPT讲稿)第三章 材料非线性有限元分析.ppt
- 哈尔滨建筑大学:《变分与弹塑性力学》课程教学课件(PPT讲稿)第二章 弹塑性本构关系简介.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)绪论 Fluid Mechanics.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第十一章 气体射流.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第十章 两相流动理论基础.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第九章 渗流.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第八章 边界层理论.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第七章 粘性流体动力学基础.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第六章 不可压缩理想流体的无旋运动.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第五章 管流.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第四章 相似原理和量纲分析.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第三章 流体动力学基础.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第二章 流体静力学.ppt
- 《流体力学 Fluid Mechanics》课程PPT教学课件(双语版)第一章 流体及其主要物理性质.ppt
- 河海大学:《弹性力学及有限元》课程PPT教学课件(双语版)课件总结.doc
- 河海大学:《弹性力学及有限元》课程PPT教学课件(双语版)第三章 平面问题直角坐标解答 solution of plane problems in rectangular coordinates.ppt
- 河海大学:《弹性力学及有限元》课程PPT教学课件(双语版)第四章 平面问题极坐标解答 solution of plane problems in polar coordinates.ppt
- 河海大学:《弹性力学及有限元》课程PPT教学课件(双语版)第十二章 薄板弯曲问题和经典解答(Bending of Thin Plates,Classical Solutions).ppt
- 河海大学:《弹性力学及有限元》课程PPT教学课件(双语版)第八章 空间问题的理论 Theory of Spatial Problems.ppt
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第一章 静力学的基本概念和受力分析.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第十章 质点的运动微分方程.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第二章 平面基本力系.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第三章 平面任意力系.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第四章 空间力系.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第十一章 动量定理.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第五章 摩擦.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第十四章 达朗贝尔原理.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第十三章 动能定理.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第十二章 动量矩定理.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第六章 点的运动.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第七章 刚体的基本运动.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第十五章 虚位移原理.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)理论力学综合复习二.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第八章 点的复合运动.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)理论力学综合复习三.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)第九章 刚体的平面运动.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)理论力学综合复习一.pps
- 西南交通大学:《理论力学》课程教学资源(PPT课件讲稿)理论力学综合练习.pps
- 西南交通大学:《理论力学》课程教学资源(试卷习题)考试试卷一试题.doc