《基因组学》课程教学资源(PPT课件讲稿)Chapter 14 基因组活性的调控 Regulation of Genome Activity

Chapter 14 Regulation of Genome Activity 1. Transient Changes in Genome Activity 2. Permanent and semipermanent changes in Genome Activity 3. Regulation of Genome Activity During Development
Chapter 14 Regulation of Genome Activity 1. Transient Changes in Genome Activity 2. Permanent and Semipermanent Changes in Genome Activity 3. Regulation of Genome Activity During Development

Table 14.1 Examples of steps in the genome expression pathway at which regulation can be exerted Example of regulation Transcription Gene accessibility Locus control regions determine chromatin structure in areas that contain genes (Section 10.1.2) Histone modifications influence chromatin structure and determine which genes are accessible(Section 10.2.1) Nucleosome positioning controls access of RNA polymerase and transcription factors to the promoter region (Section 10. 2.2 DNA methylation silences regions of the genome( Section 10.3.1) Initiation of transcription Productive initiation is influenced by activators, repressors, and other control systems (Section 11.3) Synthesis of RNA Prokaryotes use antitermination and attenuation to control the amount and nature of individual transcripts(Section 12. 1. 2)

Table 14.1 Examples of steps in the genome expression pathway at which regulation can be exerted Step Example of regulation Eukaryotic mRNA Processing Capping Some animals use capping as a means of regulating protein synthesis during egg maturation adenylation Alternative polyadenylation sites control flowering in Arabidopsis Translation of bicoid mRNA in Drosophila eggs is activated after fertilization by extension of the poly (A)tail(Section 14.3.4) Alternative splice site selection controls sex determination in Drosophila(Section 12.2. 2) Chemical modification RNA editing of apolipoprotein-B mRNA results in liver-and intestine-specific versions of this protein(Section 12.2.5) mRNA degradation MicroRNAs control cell death, specification of neuron cell types, and control of fat storage in Caenorhabditis elegans, as well as many diverse processes in other eukaryotes (Section 12.2.6) Iron controls degradation of transferrin receptor mRNA(Section 13. 2.2)

Table 14. 1 Examples of steps in the genome expression pathway at which regulation can be exerted Step Example of regulation Protein synthesis and processing Initiation of translation Phosphorylation of elF-2 results in a general reduction in translation initiation in eukaryotes (seon1322) Ribosomal proteins in bacteria control their own synthesis by modulating ribosome attachment to their mRNAs(Section 13. 2.2) In some eukaryotes, iron controls ribosome scanning on ferritin mRNAs(Section 13. 2.2) Small RNAs in bacteria regulate the response to oxidative stress by modulating initiation of translation of various mRNAs(Section 13. 2.2) Protein synthesis Frameshifting enables two DNA polymerase lll subunits to be translated from the Escherichia coli dnax gene(Section 13.2.3 Cutting events Alternative cleavage pathways for polyproteins result in tissue-specific protein products (Section 13.3.2) Chemical modification Many proteins involved in signal transduction are activated by phosphorylation (Section 14. 1.2)

How the activity of the genome as a whole is requlated Differentiation not only in multicellular organisms Human has over 250 types of specialized cells
How the activity of the genome as a whole is regulated. • Differentiation not only in multicellular organisms. • Human has over 250 types of specialized cells

14.1 Transient Changes in Genome activity Most cells in multicellular organisms live in less variable environments but the maintenance of this environment requires coordination between the activities of different cells To exert an effect on genome activity, the nutrient, hormone, growth factor, or other extracellular compound that represents the external stimulus must influence events within the cell
14.1 Transient Changes in Genome Activity • Most cells in multicellular organisms live in less variable environments, but the maintenance of this environment requires coordination between the activities of different cells. • To exert an effect on genome activity, the nutrient, hormone, growth factor, or other extracellular compound that represents the external stimulus must influence events within the cell

Direct activation Indirect activation signaling compound signal transduction enters the cell via a cell surface receptor Surface receptor ODD

14.1.1 Signal transmission by import of the extracellular signaling compound Signaling compound directly influences a protein factor Signaling com- pound is an activator o→ Genome repressor of transcription ⑩D Signaling compound indirectly influences a protein factor
14.1.1 Signal transmission by import of the extracellular signaling compound

Lactoferrin is an extracellular signaling protein Which acts as a transcription activator not a common mechanism difficulty in designing a protein that combines the hydrophobic properties needed for effective transport across a membrane with the hydrophilic properties needed for migration through the aqueous cytoplasm to the protein's site of action in the nucleus or on a ribosome.想想大宝SOD蜜的护肤机理 Lactoferrin play a role in the body's defenses against microbial attack, by reducing free-iron levels in milk, thereby starving invading microbes of this essential cofactor Its dna binding was shown to be sequence specific and to stimulate transcription, confirming that lactoferrin is a true transcription activator
Lactoferrin is an extracellular signaling protein which acts as a transcription activator • not a common mechanism • difficulty in designing a protein that combines the hydrophobic properties needed for effective transport across a membrane with the hydrophilic properties needed for migration through the aqueous cytoplasm to the protein‘s site of action in the nucleus or on a ribosome. 想想大宝SOD蜜的护肤机理。 • Lactoferrin: play a role in the body's defenses against microbial attack, by reducing free-iron levels in milk, thereby starving invading microbes of this essential cofactor. • Its DNA binding was shown to be sequence specific and to stimulate transcription, confirming that lactoferrin is a true transcription activator

Some imported signaling compounds directly influence the activity of pre-existing protein factors Environmental concentration of copper Lactose Nutritional Toxic copper and zinc Cu CuCucu Steroid hormones Cu CuCucu Cu Cu Cu Cu Cu Cu Cu Estrogen receptor C Cu Cu Progesterone receptor N Active Mac1p Active Acelp Glucocorticoid receptor CTR1 CUPT N sC CTR3 CRS5 200 amino ac FRET SOD1 KEY a Variable region DNA-binding domain Synthesis of copper- Synthesis of copper Hormone-binding domain uptake proteins detoxification proteins
Some imported signaling compounds directly influence the activity of pre-existing protein factors Lactose copper and zinc Steroid hormones
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 厦门大学:《生物显微技术》课程教学资源(PPT课件)第四模块 生物显微制片技术.ppt
- 《生物医学工程探索》课程教学资源(PPT课件讲稿)Lecture 10 生物分子工程(免疫工程)Eugenics and Genetics - Excitements.ppt
- 《分子生物学》课程教学大纲 molecular biology.pdf
- 《遗传学》课程教学资源(PPT课件讲稿)第十章 遗传物质的改变(二)基因突变.ppt
- 同济大学:果蝇的核小体定位与基因调控(PPT讲稿,生命科学与技术学院:江赐忠).ppt
- 基因重组和基因工程(PPT课件讲稿)Genetic Recombination and Genetic Engineering.ppt
- 复旦大学:计算机预测真核生物基因组中的基因 Predicting Genes in Eukaryotic Genomes By Computer(郝柏林).ppt
- 《基因工程原理 Principle of Gene Engineering》课程教学资源(PPT课件讲稿)分子克隆工具酶及其应用.ppt
- 《生物医学工程导论》课程教学资源(PPT课件讲稿)第一章 概述(Biomedical Engineering, BME).ppt
- 《分子生物学》课程教学大纲 Molecular Biology.doc
- 山东大学:《生物医学信号处理 Biomedical Signal Processing》精品课程教学资源(PPT课件讲稿)Chapter 08 The Discrete Fourier Transform.ppt
- 西安电子科技大学:《基因工程》课程教学资源(PPT课件讲稿)第二章 基因工程的酶学基础 第一节 限制性核酸内切酶.ppt
- 《分子生物学》课程电子教案(PPT教学课件)外源基因在真核细胞中的表达.ppt
- 上海中医药大学:《微生物学》课程教学资源(PPT课件讲稿)其他原核微生物.ppt
- 《医学微生物学》课程PPT教学课件(实验讲稿)实验五 其他细菌、真菌、病毒学试验.ppt
- 《分子生物学》课程教学资源(PPT课件)基因组文库的构建与基因分离、cDNA文库的构建与筛选.ppt
- 山东大学:《生物医学信号处理 Biomedical Signal Processing》精品课程教学资源(PPT课件讲稿)Chapter 03 the Z-transform.ppt
- 湖北大学:《遗传学 Genetics》课程教学资源(PPT课件讲稿)第12章 突变和重组机理.ppt
- 山东大学:《生物医学信号处理 Biomedical Signal Processing》精品课程教学资源(PPT课件讲稿)Chapter 07 Filter Design Techniques.pptx
- 中国医学大学:《生物化学与分子生物学》课程教学资源(PPT课件讲稿)第一篇 个体的构成与机能 第一章 生物大分子的结构与功能 第一节 蛋白质的结构与功能(孙黎光).ppt
- 吉林大学:重组人白介素-18诱导表达纯化与免疫印迹鉴定(PPT讲稿).ppt
- 山东大学:《生物医学信号处理 Biomedical Signal Processing》精品课程教学资源(PPT课件讲稿)Chapter 02 Discrete-Time Signals and Systems.ppt
- 《环境生物学》课程教学资源(PPT课件)第二章 污染物对生物的影响.ppt
- 山东大学:《生物医学信号处理 Biomedical Signal Processing》精品课程教学资源(PPT课件讲稿)Chapter 06 structures for discrete-time system.pptx
- 中国医科大学:《细胞生物学》课程教学资源(PPT课件讲稿)细胞的基本结构与功能——内膜系统和线粒体(主讲:张惠丹).ppt
- 《遗传学》课程教学资源(PPT课件讲稿)第八章 数量性状的遗传.ppt
- 信号传递网络(PPT课件讲稿)Networks of Biological Signaling Pathways.ppt
- 《细胞生物学》课程教学资源(PPT课件)细胞质膜与细胞表面(细胞连接、细胞外被与细胞外基质).ppt
- 《生物技术制药》课程教学资源(PPT课件讲稿)第五章 动物细胞制药.ppt
- 《生物学》课程教学资源(PPT课件)分子杂交技术、核酸序列的测定.ppt
- 合肥学院:电感耦合等离子体质谱仪(ICP-MS)的原理及其应用(PPT讲稿,汇报人:王玮).ppt
- 三胚层无体腔动物(PPT课件讲稿)扁形动物门.ppt
- 《微生物学》课程教学资源(PPT讲稿)细菌的感染与免疫.ppt
- 基因的分离与鉴定(PPT课件讲稿)基因的分离与鉴定方法.ppt
- 《细胞生物学》课程教学资源(PPT课件讲稿)蛋白质分选与细胞的结构装配.ppt
- 《生物医学工程导论》课程教学资源(PPT课件讲稿)第四章 生物材料.ppt
- 甘肃农业大学:《酶工程》课程教学资源(教学大纲)Enzyme Engineering.pdf
- 《遗传学》课程教学资源(PPT课件讲稿)Chapter15 遗传与进化.ppt
- 《分子生物学》课程教学资源(PPT课件)第三章 基因组的结构和功能.ppt
- 《基因工程》课程教学资源(PPT课件)第二章 分子克隆载体.ppt