南京大学:《计算机问题求解》课程教学资源(课件讲稿)图论的其它专题(平面图与图着色)

计算机问题求解一论题3-14 图论中的其它专题 2016年12月06日
计算机问题求解 – 论题3-14 - 图论中的其它专题 2016年12月06日

平面图 (b)H: 2 问题1: 一个图是否为平面图与其 如何画法有关吗?
平面图

Theorem 9.1 (The Euler Identity)If G is a connected plane graph of order n,size m and having r regions,then n-m+r=2. 证明要点: 1,树是满足欧拉公式 2,反证法:如果除树外,欧拉公式不成立 如果我们用归纳 2.1找一个边最小的图 法证明该定理, 2.1.1必定存在回路 该如何归纳? 2.2去除回路上一条边,构造新图 2.2.1新图有n个点,m-1条边,r-1个区域 2.3新图满足欧拉公式(原图是最小的) 2.3.1n-(m-1)+(r-1)=2 2.3.2n-m+r=2 2.4矛盾 3,欧拉公式满足
证明要点: 1,树是满足欧拉公式 2,反证法:如果除树外,欧拉公式不成立 2.1 找一个边最小的图 2.1.1 必定存在回路 2.2 去除回路上一条边,构造新图 2.2.1 新图有n个点,m-1条边,r-1个区域 2.3 新图满足欧拉公式(原图是最小的) 2.3.1 n-(m-1)+(r-1) = 2 2.3.2 n-m+r=2 2.4 矛盾 3,欧拉公式满足 如果我们用归纳 法证明该定理, 该如何归纳?

问题2: 你是否在哪里里还见过“这个” 欧拉公式?

问题3: 必要条件可以判断什么? 欧拉公式在实际判断平面 图时有用吗?

简单连通平面图的必要条件 ■欧拉公式的推论:若G是简单连通平面图(≥3),则 m≤3n-6。 口证明:至少3个顶点的简单图G中,面的最小度数是3, .3r≤2m,根据欧拉公式:3r=3m+6-3n,.3m+6-3n≤2m,即: m≤3n-6。 ■K不是平面图:在K,中,n=5,m=10,3n-6=9
简单连通平面图的必要条件 欧拉公式的推论:若G是简单连通平面图(n3), 则 m3n-6。 证明:至少3个顶点的简单图G中,面的最小度数是3, 3r2m, 根据欧拉公式:3r=3m+6-3n, 3m+6-3n2m, 即: m3n-6。 K5不是平面图:在K5中,n=5, m=10, 3n-6=9

问题4: 上述推论不能证明K3.3是 非平面图,你能推出一个 类似的推论用于K33吗?

同胚图 ■基本动作: 口二次顶点的插入和消去 。1 如果图G,和G,经过反复的插入和消去二次顶点,可达到同构,则G,和 G是同胚图
同胚图 基本动作: 二次顶点的插入和消去 如果图G1和G2经过反复的插入和消去二次顶点,可达到同构,则G1和 G2是同胚图。 u u v v w

图的收缩 ■基本动作: u d u (u,v) ■图的收缩
图的收缩 基本动作: 图的收缩 u v u v e w (u,v)

平面图的充分必要条件 Kuratowsky定理 口图G是平面图当且仅当G中不含与K,或者K?3同胚的子图,也不含可以 收缩到K或者K3.3的子图
平面图的充分必要条件 Kuratowsky定理 图G是平面图当且仅当G中不含与K5或者K3,3同胚的子图,也不含可以 收缩到K5或者K3,3的子图
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)最大流算法.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)图中的匹配与覆盖(图中的匹配与因子分解).pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)旅行问题(图旅行).pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)图中的连通度和距离.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)多源最短通路算法 All-Pair Shortest Paths.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)单源最短通路算法.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)树.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)图的计算机表示以及遍历.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)图的基本概念.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)B树.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)用于动态等价关系的数据结构.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)贪心算法.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)动态规划.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)集合及其运算.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)递归及其数学基础.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)计算思维引导.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)组合与计数.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)算法的效率.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)算法的基本结构.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)算法正确性.pdf
- 南京大学:《计算机问题求解》课程教学资源(课件讲稿)矩阵计算.pdf
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)线性规划.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)群初步.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)群同态基本定理与正规子群.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)数论基础.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)代数编码.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)密码算法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)NP完全理论初步.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)串匹配.ppt
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)近似算法的基本概念.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)算法问题的形式化描述.pptx
- 《计算机问题求解》课程参考书籍:《算法学——计算精髓》PDF电子版(Algorithmics - The Spirit of Computing,THIRD EDITION,David Harel).pdf
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)为什么计算机能解题.ppt
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)什么样的推理是正确的.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)基本的算法结构.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)常用的证明方法.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)计算思维引导.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)如何将算法告诉计算机.pptx
- 南京大学:《计算机问题求解》课程教学资源(PPT课件讲稿)数据与数据结构.pptx
- 《计算机问题求解》课程教学资源(阅读材料)Computational Thinking:What and Why?.pdf