麻省理工学院:《Robust System Design》Plan for the session

Plan for the session Questions? Complete some random topics Lecture on Design of Dynamic Systems (Signal /Response Systems Recitation on hw#5? mit 人 16881
Plan for the Session • Questions? • Complete some random topics • Lecture on Design of Dynamic Systems (Signal / Response Systems) • Recitation on HW#5? 16.881 MIT

Dummy levels and u Before Factor Effects on the s/N Ratio moz 16 After 12 10 Set sp2=sp3 今今寸小$$小小 Factor Effects on the s/N Ratio urises Predictions 16 unaffected 回o 12 10 人 16881
Dummy Levels and µ • B e fo re • A ft er – Set SP2=SP3 – µ rises – Predictions unaffected Factor Effects on t he S/N R atio 10 12 14 16 18 SP1 SP2 SP3 DA1 DA2 DA3 CUP1 CUP2 CUP3 PP1 PP2 PP3 S/N Ratio (dB) Factor Effects on t he S/N R atio 10 12 14 16 18 SP1 SP2 SP3 DA1 DA2 DA3 CUP1 CUP2 CUP3 PP1 PP2 PP3 S/N Ratio (dB) µ µ 16.881 MIT

Number of tests One at a time Listed as small Orthogonal Array Listed as small White box Listed as medium mit 人 16881
Number of Tests • One at a time – Listed as small • Orthogonal Array – Listed as small • W h i t e B ox – Listed as medium 16.881 MIT

Linear regression Fits a linear model to data 阝0+β1X1+8 y-intercept rIse run slopeβ,=se X Y=B0+BiX 16881
Linear Regression • Fits a linear model to data Yi β 0 β 1 Xi . εi 16.881 MIT

Error terms Error should be independent Within replicates Between X values [X: .Y: on r xxX Population data points mit 人 16881
Error Terms • Error should be independent – Within replicates – Between X values 6 4 2 0 0 0.5 1 1.5 2 Population regression line 2 Population data points 16.881 Error terms MIT

Least Squares estimators We want to choose values of bo and b, that minimize the sum squared error Ssb1)-∑|y(b0+b1x) Take the derivatives, set them equal to zero and you get ∑ Xi- mean(x))(y: mean(y) 0:= mean(y)-b 1 mean(x) b mean x
Least Squares Estimators • We want to choose values of bo and b1 that minimize the sum squared error SSE b , 0 b 1 i 2 yi b 0 b 1 xi . • Take the derivatives, set them equal to zero and you get b 1 i xi mean () x yi . mean ( ) y i xi mean () x 2 b 0 mean () y b ( ) 1 .mean x MIT

Distribution of error Homoscedasticity Heteroscedasticity xxX Population data points Error terms mit 人 16881
Distribution of Error • Homoscedasticity • Heteroscedasticity 4 2 0 2 4 6 0 0.5 1 1.5 2 Population regression line Population data points Error terms 16.881 MIT

Cautions re: Regression What will result 2·10 if you run a linear y expo. IIod regression on these data sets? 2 0.012684 9.885085 521501 30 l3690990 a D o Scatterplot of data Estimated regression line 0012684 9.885085 mit 人 16881
Cautions Re: Regression 2 104 . • What will result 2 104 if you run a linear y expok 1 104 regression on 0 0 0 2 4 6 8 10 these data sets? 0.012684 xk 9.885085 28.521501 30 20 y quadk 1.369099 10 0 16.881 1 2 3 0 50 Scatterplot of data Estimated regression line 0 2 4 6 8 10 0.012684 xk 9.885085 MIT

Linear regression A ssumptions 1. The average value of the dependent variable y is a linear function ofX. 2. The only random component of the linear model is the error term 8. The values of X are assumed to be fixed 3. The errors between observations are uncorrelated. In addition, for any given value ofx, the errors are are normally distributed with a mean of zero and a constant variance mit 人 16881
Linear Regression Assumptions 1. The average value of the dependent variable Y is a linear function ofX. 2. The only random component of the linear model is the error term ε. The values of X are assumed to be fixed. 3. The errors between observations are uncorrelated. In addition, for any given value ofX, the errors are are normally distributed with a mean of zero and a constant variance. 16.881 MIT

If The assumptions hold You can compute confidence intervals on B You can test hypotheses Test for zero slope B1=0 Test for zero intercept 0.7 0.80.8509 You can compute ×× Scatterplot of data Estimated regression line Upper prediction band prediction intervals Lower pi rediction band Prediction band for the mean ofx mit 人 16881
If The Assumptions Hold • You can compute confidence intervals on β1 0.8 • You can test hypotheses – Test for zero slope β1=0 0.6 – Test for zero intercept β 0=0 0.7 0.75 0.8 0.85 0.9 Scatterplot of data Estimated regression line Upper prediction band Lower prediction band Prediction band for the mean of x • You can compute prediction intervals 16.881 MIT
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Standard Orthogonal Arrays.pdf
- 麻省理工学院:《Robust System Design》Constructing Orthogonal arrays.pdf
- 麻省理工学院:《Robust System Design》Performance characterization Don Clausing.pdf
- 麻省理工学院:《Robust System Design》analysis of variance anoVa.pdf
- 麻省理工学院:《Robust System Design》Control and noise factors.pdf
- 麻省理工学院:《Robust System Design》Matrix Experiments Using Orthogonal Arrays.pdf
- 麻省理工学院:《Robust System Design》Context of robust Design.pdf
- 麻省理工学院:《Robust System Design》Course Introduction.pdf
- 《飞行器再入动力学与制导》电子书.pdf
- 《787起落架》(英文版) Hydraulics and Landing Gear DREAMLINER Systems.ppt
- 航空安全(民航安全):航空安全自愿报告系统.pdf
- 航空安全(民航安全):民航安全管理 (基础篇).pdf
- 民航学院:航空安全(民航安全)——民航安全管理基础篇.pdf
- 航空安全(民航安全):民航法规体系.pdf
- 航空安全(民航安全):保证民航安全的要素.pdf
- 航空安全(民航安全):导论.pdf
- 航空安全(民航安全):序论.pdf
- 东华大学:航空航天(PPT讲稿)人类飞天梦.ppt
- 哈尔滨工业大学:《航天科技概论》课程教学资源(PPT课件讲稿,主讲:张昊春).ppt
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Term Project Final presentation.pdf
- 麻省理工学院:《Robust System Design》Final Project Questions.pdf
- 麻省理工学院:《Robust System Design》Objectives.pdf
- 麻省理工学院:《Robust System Design》The mahalanobis distance in Character Recognition.pdf
- 麻省理工学院:《Robust System Design》Final exam.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 1: Introduction.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 2: Entropy.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 3: The Sampling theorem.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 4: Quantization.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 5: Source Coding.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 10: Link Budget Analysis and Design.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 12/13: Channel Capacity and Coding.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 8-9: Signal detection in Noise.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 6&7 Modulation.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 14: Cyclic Codes and error detection.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 17/18: Delay Models for Data.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Packet Multiple access ll Local Area Networks(LANs).pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 21: Routing in Data Networks.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 15: ARQ Protocols.pdf