麻省理工学院:《Robust System Design》Plan for the session

Plan for the session Quiz on Constructing Orthogonal Arrays (10 minutes) Complete some advanced topics on Oas Lecture on Computer Aided robust Design Recitation on hw#5 Robust System Design mit 人 16881 Session #11
Plan for the Session • Quiz on Constructing Orthogonal Arrays (10 minutes) • Complete some advanced topics on OAs • Lecture on Computer Aided Robust Design • Recitation on HW#5 Robust System Design 16.881 Session #11 MIT

How to estimate error variance in an l 18 Consider Phadke pg 89 How would the two unassigned columns contribute to error variance? Remember li8(21X37 Hasl+1*(2-1)+7*(3-1)=16DOF But i8 rows Therefore 2 dof can be used to estimate the sum square due to error Robust System Design 16881 mit 人 Session #11
How to Estimate Error variance in an L18 • Consider Phadke pg. 89 • How would the two unassigned columns contribute to error variance? • Remember L18(21x37) – Has 1+1*(2-1)+7*(3-1) = 16 DOF – But 18 rows – Therefore 2 DOF can be used to estimate the sum square due to error Robust System Design 16.881 Session #11 MIT

Breakdown of Sum Squares GTSS sS due Total ss to mean sS due sS due etc ss due to factor A to factor B to error Robust System Design 16881 mit 人 Session #11
Breakdown of Sum Squares GTSS SS due to mean Total SS SS due to factor A SS due to factor B SS due to error etc. Robust System Design 16.881 Session #11 MIT

Column merging Can turn 2 two level factors into a 4 level factor Can turn 2 three level factors into a six level factor Need to strike out interaction column (account for the right number of DOF!) Example on an Lg Robust System Design 16881 mit 人 Session #11
Column Merging • Can turn 2 two level factors into a 4 level factor • Can turn 2 three level factors into a six level factor • Need to strike out interaction column (account for the right number of DOF!) • Example on an L8 Robust System Design 16.881 Session #11 MIT

Column Merging in an Lg Eliminate the column which is confounded with Interactions Create a new four-level column Control factors Exp nO. ABCDEFG 234 2 12 2222 2122 22121 6 222 212 22 82212112 Robust System Design mit 人 16881 Session #11
1 2 3 4 5 6 7 8 Column Merging in an L8 • Eliminate the column which is confounded with interactions • Create a new four-level column Control Factors Exp no. A B C D E F G η 1 1 1 1 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 2 1 2 2 2 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 2 1 1 Robust System Design 16.881 Session #11 MIT

Computer Aided robust design Robust System Design 16881 mit 人 Session #11
Computer Aided Robust Design Robust System Design 16.881 Session #11 MIT

Engineering Simulations Many engineering systems can be modeled accurately by computer simulations Finite Element Analysis Digital and analog circuit simulations Computational Fluid Dynamics Do you use simulations in design analysis? How accurate reliable are your simulations? Robust System Design mit 人 16881 Session #11
Engineering Simulations • Many engineering systems can be modeled accurately by computer simulations – Finite Element Analysis – Digital and analog circuit simulations – Computational Fluid Dynamics • Do you use simulations in design & analysis? • How accurate & reliable are your simulations? Robust System Design 16.881 Session #11 MIT

Simulation desigr Optimization Formal mathematical form minimize y=f(x) minimize weight subject to h(x)=0 subject to height=23 8(X)≤0 max stress<o8Y fx Simulation h(x) g(x) Robust System Design mit 人 16881 Session #11
Simulation & Design Optimization • Formal mathematical form minimize y = f ( x) minimize weight subject to h ( x) = 0 subject to height=23” g ( x) ≤ 0 max stress<0.8Y f( x) x Simulation h ( x) g ( x) Robust System Design 16.881 Session #11 MIT

Robust Design Optimization Vector of design variables x Control factors(discrete vs continuous) Objective function(x) S/N ratio(noise must be induced) Constraints h(x),g(x) Not commonly employed Sliding levels may be used to handle equality constraints in some cases Robust System Design mit 人 16881 Session #11
Robust Design Optimization • Vector of design variables x – Control factors (discrete vs continuous) • Objective function f( x) – S/N ratio (noise must be induced) • Constraints h ( x), g ( x) – Not commonly employed – Sliding levels may be used to handle equality constraints in some cases Robust System Design 16.881 Session #11 MIT

Noise distributions Normal arises when many independent random variables are summed · Uniform Arises when other distributions are truncated · Lognormal ognormal distribution Arises when normall distributed variables are p(x) multiplied or transformed Robust System Design mit 人 16881 Session #11
p x Noise Distributions • Normal – Arises when many independent random variables are summed • Uniform – Arises when other distributions are truncated • Lognormal Lognormal Distribution – Arises when normally distributed variables are () multiplied or transformed x Robust System Design 16.881 Session #11 MIT
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Standard Orthogonal Arrays.pdf
- 麻省理工学院:《Robust System Design》Constructing Orthogonal arrays.pdf
- 麻省理工学院:《Robust System Design》Performance characterization Don Clausing.pdf
- 麻省理工学院:《Robust System Design》analysis of variance anoVa.pdf
- 麻省理工学院:《Robust System Design》Control and noise factors.pdf
- 麻省理工学院:《Robust System Design》Matrix Experiments Using Orthogonal Arrays.pdf
- 麻省理工学院:《Robust System Design》Context of robust Design.pdf
- 麻省理工学院:《Robust System Design》Course Introduction.pdf
- 《飞行器再入动力学与制导》电子书.pdf
- 《787起落架》(英文版) Hydraulics and Landing Gear DREAMLINER Systems.ppt
- 航空安全(民航安全):航空安全自愿报告系统.pdf
- 航空安全(民航安全):民航安全管理 (基础篇).pdf
- 民航学院:航空安全(民航安全)——民航安全管理基础篇.pdf
- 航空安全(民航安全):民航法规体系.pdf
- 航空安全(民航安全):保证民航安全的要素.pdf
- 航空安全(民航安全):导论.pdf
- 航空安全(民航安全):序论.pdf
- 东华大学:航空航天(PPT讲稿)人类飞天梦.ppt
- 麻省理工学院:《Robust System Design》Term Project Final presentation.pdf
- 麻省理工学院:《Robust System Design》Final Project Questions.pdf
- 麻省理工学院:《Robust System Design》Objectives.pdf
- 麻省理工学院:《Robust System Design》The mahalanobis distance in Character Recognition.pdf
- 麻省理工学院:《Robust System Design》Final exam.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 1: Introduction.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 2: Entropy.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 3: The Sampling theorem.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 4: Quantization.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 5: Source Coding.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 10: Link Budget Analysis and Design.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 12/13: Channel Capacity and Coding.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 8-9: Signal detection in Noise.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 6&7 Modulation.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 14: Cyclic Codes and error detection.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 17/18: Delay Models for Data.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Packet Multiple access ll Local Area Networks(LANs).pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 21: Routing in Data Networks.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 15: ARQ Protocols.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Eytan Modiano Massachusetts Institute of Technology.pdf