美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 12/13: Channel Capacity and Coding

16.36: Communication Systems Engineering Lectures 12/13: Channel Capacity and Coding Eytan Modiano
Eytan Modiano Slide 1 16.36: Communication Systems Engineering Lectures 12/13: Channel Capacity and Coding Eytan Modiano

Channel Coding When transmitting over a noisy channel, some of the bits are received with errors Example: Binary Symmetric Channel (BSc) Pe= probability oferror Q: How can these errors be removed? A: Coding: the addition of redundant bits that help us determine what was sent with greater accuracy
Eytan Modiano Slide 2 Channel Coding • When transmitting over a noisy channel, some of the bits are received with errors Example: Binary Symmetric Channel (BSC) • Q: How can these errors be removed? • A: Coding: the addition of redundant bits that help us determine what was sent with greater accuracy 1 1 0 0 1-Pe 1-Pe Pe Pe = Probability of error

Example Repetition code Repeat each bit n times(n-odd Input Code 000.0 Decoder If received sequence contains n/2 or more 1s decode as a 1 and o otherwise Max likelihood decoding P(error 1 sent)=P(error 0 sent PI more than n /2 bit errors occur] ∑|,P(-Py m/2(
Eytan Modiano Slide 3 Example (Repetition code) Repeat each bit n times (n-odd) Input Code 0 000……..0 1 11..……..1 Decoder: • If received sequence contains n/2 or more 1’s decode as a 1 and 0 otherwise – Max likelihood decoding P ( error | 1 sent ) = P ( error | 0 sent ) = P[ more than n / 2 bit errors occur ] = n i P P i n n e i e n i − = − ∑/ ( ) 2 1

Repetition code, cont For Pe<1/2, plerror) is decreasing in n for any e, 3 n large enough so that p(error)<e Code Rate: ratio of data bits to transmitted bits For the repetition codeR= 1/n To send one data bit. must transmit n channel bits "bandwidth expansion In general, an(n, k code uses n channel bits to transmit k data bits Code rate rek/n Goal: for a desired error probability, E, find the highest rate code that can achieve p(error) <e
Eytan Modiano Slide 4 Repetition code, cont. • For P e < 1/2, P(error) is decreasing in n – ⇒ for any ε, ∃ n large enough so that P (error) < ε Code Rate: ratio of data bits to transmitted bits – For the repetition code R = 1/n – To send one data bit, must transmit n channel bits “bandwidth expansion” • In general, an (n,k) code uses n channel bits to transmit k data bits – Code rate R = k / n • Goal: for a desired error probability, ε, find the highest rate code that can achieve p(error) < ε

Channel Capacity The capacity of a discrete memoryless channel is given by, C=max 1(r; Y) Channel Example: Binary Symmetric Channel (BSc) P0 P1=1 IX; Y)=H (Y-H YX=H(X)-H(XY H(X×Y)=H(XY=0)P(Y=0)+H(XY=1)P(Y=1) H(XY0)=H(XY=1=Pelog(1/Pe)(1-Pe)log(1/1-P)=Hb(Pe) H(XY=Hb(Pe=>I(; Y)=H(X)-Hb(Pe) H(X)=Po log(1/P0)+(1-Po)log(11-P0)=Hb(po) I(X; Y)=Hb (Po)-Hb(Pe
Eytan Modiano Slide 5 Channel Capacity • The capacity of a discrete memoryless channel is given by, – Example: Binary Symmetric Channel (BSC) I(X;Y) = H (Y) - H (Y|X) = H (X) - H (X|Y) H (X|Y) = H (X|Y=0)*P(Y=0) + H (X|Y=1)*P(Y=1) H (X|Y=0) = H (X|Y=1) = Pelog(1/Pe) + (1-Pe)log(1/ 1-Pe) = Hb(Pe) H (X|Y) = Hb(Pe) => I(X;Y) = H(X) - Hb(Pe) H (X) = P0 log (1/P0) + (1-P0) log (1/ 1-P0) = Hb(p0) => I (X;Y) = Hb (P0) - Hb(Pe) C IXY = max ( ; ) p x( ) X Channel Y 1 1 0 0 1-Pe 1-Pe Pe P0 P1 =1-P0

Capacity of Bsc I (X;Y)=Hb(Po)-Hb(Pe) H(P)=P log(1/P)+(1-P)log(1/1-P Hb(P)<=1 with equality if P=1/2 C=max po ((X; Y)=Hb(Po)-H(Pe))=1-Hb(Pe Hb(P) C=1-Hb(Pe 1/2 C=0 when P= 1/2 and c 1 when P=0 or P =1
Eytan Modiano Slide 6 Capacity of BSC I (X;Y) = Hb (P0) - Hb(Pe) • Hb(P) = P log(1/P) + (1-P) log(1/ 1-P) – Hb(P) <= 1 with equality if P=1/2 C = max P0 {I (X;Y) = Hb (P0) - Hb(Pe)} = 1 - Hb(Pe) C = 0 when Pe = 1/2 and C = 1 when Pe = 0 or Pe=1 0 1/2 1 P Hb(P) 1 0 1/2 1 Pe C = 1 - Hb(Pe) 1

Channel Coding Theorem(Claude Shannon) Theorem For allro there exists a code of rate r whose error probability C, EEo>0, such that the probability of error is always greater than Eo For code rates greater than capacity, the probability of error is bounded away from 0
Eytan Modiano Slide 7 Channel Coding Theorem (Claude Shannon) Theorem: For all R o; there exists a code of rate R whose error probability C, ∃ ε 0 > 0, such that the probability of error is always greater than ε 0 For code rates greater than capacity, the probability of error is bounded away from 0

Channel coding Block diagram Source Source h chanelle Modulator Channel Sink Source Channel decoder decoder KH Demod K
Eytan Modiano Slide 8 Channel Coding • Block diagram Source Source encoder Channel encoder Modulator Channel Demod Channel decoder Source decoder Sink

pproaches to coding Block Codes Data is broken up into blocks of equal length Each block is"mapped"onto a larger block Example:( 6, 3 code, n=6, k=3, R=1/2 000-000000 100→100101 001→001011 101→101110 010→010111 10→110010 011→011100 11→111001 An(n, k binary block code is a collection of 2k binary n-tuples(n>k) n= block length k= number of data bits n-k= number of checked bits Rek/n=code rate
Eytan Modiano Slide 9 Approaches to coding • Block Codes – Data is broken up into blocks of equal length – Each block is “mapped” onto a larger block Example: (6,3) code, n = 6, k = 3, R = 1/2 000 → 000000 100 → 100101 001 → 001011 101 → 101110 010 → 010111 110 → 110010 011 → 011100 111 → 111001 • An (n,k) binary block code is a collection of 2 k binary n-tuples (n>k) – n = block length – k = number of data bits – n-k = number of checked bits – R = k / n = code rate

pproaches to coding Convolutional codes The output is provided by looking at a sliding window of input Ci UK Delay Delay Ca)= U(2K OU(eK.2,C2K+1=U2k+n⑨Ua)⑨Ua1 mod(2 addition (1+1=0) Slide 10
Eytan Modiano Slide 10 Approaches to coding • Convolutional Codes – The output is provided by looking at a sliding window of input Delay Delay + + + Ci Ci+1 U K C(2K) = U(2K) U(2K-2), C(2K+1) = U(2K+1) U(2K) U(2K-1) + + + + mod(2) addition (1+1=0)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 10: Link Budget Analysis and Design.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 5: Source Coding.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 4: Quantization.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 3: The Sampling theorem.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 2: Entropy.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 1: Introduction.pdf
- 麻省理工学院:《Robust System Design》Final exam.pdf
- 麻省理工学院:《Robust System Design》The mahalanobis distance in Character Recognition.pdf
- 麻省理工学院:《Robust System Design》Objectives.pdf
- 麻省理工学院:《Robust System Design》Final Project Questions.pdf
- 麻省理工学院:《Robust System Design》Term Project Final presentation.pdf
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Standard Orthogonal Arrays.pdf
- 麻省理工学院:《Robust System Design》Constructing Orthogonal arrays.pdf
- 麻省理工学院:《Robust System Design》Performance characterization Don Clausing.pdf
- 麻省理工学院:《Robust System Design》analysis of variance anoVa.pdf
- 麻省理工学院:《Robust System Design》Control and noise factors.pdf
- 麻省理工学院:《Robust System Design》Matrix Experiments Using Orthogonal Arrays.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 8-9: Signal detection in Noise.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 6&7 Modulation.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 14: Cyclic Codes and error detection.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 17/18: Delay Models for Data.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Packet Multiple access ll Local Area Networks(LANs).pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 21: Routing in Data Networks.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 15: ARQ Protocols.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Eytan Modiano Massachusetts Institute of Technology.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》TCP/IP and the Internet Eytan Modiano Massachusetts Institute of Technologylec22.pdf
- 《卫星工程》英文版(一) Attitude Determination and Control (ADCS).pdf
- 《卫星工程》英文版(一) Introduction to Optics part II.pdf
- 《卫星工程》英文版(一)Minimum Energy Trajectories for Techsat 21 Earth Orbiting Clusters.pdf
- 《卫星工程》英文版(一) LAUNCH SYSTEMS Col John Keesee.pdf
- 《卫星工程》英文版(一) l2_orbital_mech.pdf
- 《卫星工程》英文版(一) l3 scpowersys dm done2.pdf
- 《卫星工程》英文版(一) l4 propulsion.pdf
- 《卫星工程》英文版(一) l5 space environ done2.pdf
- 《卫星工程》英文版(一) 10 emformflight.pdf
- 《卫星工程》英文版(一) l6 optics 1.pdf
- 《卫星工程》英文版(一) Trajectory Design For A visibl Geosynchronous Earth Imager.pdf