麻省理工学院:《Robust System Design》Matrix Experiments Using Orthogonal Arrays

MatriX Experiments Using Orthogonal Arrays Robust System Design mit 人 16881
Matrix Experiments Using Orthogonal Arrays Robust System Design 16.881 MIT

Comments on HW#2 and Quiz #1 Questions on the Reading Q Brief lecture Paper Helicopter Experiment Robust System Design mit 人 16881
Comments on HW#2 and Quiz #1 Questions on the Reading Quiz Brief Lecture Paper Helicopter Experiment Robust System Design 16.881 MIT

Learning objectives Introduce the concept of matrix experiments Define the balancing property and orthogonality Explain how to analyze data from matrix experiments Get some practice conducting a matrix experiment Robust System Design mit 人 16881
Learning Objectives • Introduce the concept of matrix experiments • Define the balancing property and orthogonality • Explain how to analyze data from matrix experiments • Get some practice conducting a matrix experiment Robust System Design 16.881 MIT

Static Parameter Design and the P-Diagram Noise factors Induce noise Product Process Signal Factor Response Hold constant Optimize fora“ static Control Factors experiment Vary according to an experimental plan Robust System Design mit 人 16881
Static Parameter Design and the P-Diagram Noise Factors Induce noise Product / Process R esp o nse Signal Factor Hold constant Optimize for a “static” experiment Control Factors Vary according to an experimental plan Robust System Design 16.881 MIT

Parameter Design Problem Define a set of control factors(A, B, C.) Each factor has a set of discrete levels Some desired response n(a, B, c.)is to be maximized Robust System Design mit 人 16881
Parameter Design Problem • Define a set of control factors (A,B,C…) • Each factor has a set of discrete levels • Some desired response η (A,B,C…) is to be maximized Robust System Design 16.881 MIT

Full Factorial Approach Try all combinations of all levels of the factors(A B, Cl,A,B,C2, If no experimental error. it is guaranteed to find maximum If there is experimental error. replications will allow increased certainty BUt... #experiments=#levels#control factors Robust System Design mit 人 16881
Full Factorial Approach • Try all combinations of all levels of the factors (A 1 B 1 C 1, A 1 B 1 C 2,...) • If no experimental error, it is guaranteed to find maximum • If there is experimental error, replications will allow increased certainty • BUT ... #experiments = #levels#control factors Robust System Design 16.881 MIT

additive model assume each parameter affects the response independently of the others nA, Bi, Ck, D)=u+a;+b,+Ck+d+e This is similar to a taylor series expansion f(x,y)=f(x。,y)+ x-x)+ (y-yo)+hot OX X=x y=yo Robust System Design mit 人 16881
Additive Model • Assume each parameter affects the response independently of the others η( Ai , B j , Ck , Di) = µ + ai + b j + c k + di + e • This is similar to a Taylor series expansion ∂f ∂f f ( x, y) = f ( x o , y o ) + ∂x ⋅( x − x o ) + ∂y ⋅( y − y o ) + h.o.t x = xo y = yo Robust System Design 16.881 MIT

One factor at a Time Control Factors Expt.A No 2345678 B22213 222222 222 2222 乃乃m水m Robust System Design mit 人 16881
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 One Factor at a Time Control Factors Expt. No. A C 2 η 1 η 3 η B D 2 2 2 2 2 2 2 2 2 2 η 2 η 2 η 1 2 2 3 2 2 2 1 2 2 η 2 η 2 η 2 3 2 2 2 1 2 2 3 Robust System Design 16.881 MIT

Or rtnogona L1 Array Control factors Expt.A B CD 2 2 2 3 4 2 2 2 3 78 Robust System Design mit 人 16881
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 Orthogonal Array Control Factors Expt. No. A C D 1 1 1 η 2 2 2 η 3 3 3 η 1 2 3 η 2 3 1 η 3 1 2 η 1 3 2 η 2 1 3 η 3 2 1 η B 1 1 1 2 2 2 3 3 3 Robust System Design 16.881 MIT

Notation for Matrix Experiments L(3 Number of experiments Number of levels Number of factors (3-1)x4 Robust System Design mit 人 16881
Notation for Matrix Experiments Number of experiments L9 (3 4) Number of levels Number of factors 9=(3-1)x4+1 Robust System Design 16.881 MIT
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《Robust System Design》Context of robust Design.pdf
- 麻省理工学院:《Robust System Design》Course Introduction.pdf
- 《飞行器再入动力学与制导》电子书.pdf
- 《787起落架》(英文版) Hydraulics and Landing Gear DREAMLINER Systems.ppt
- 航空安全(民航安全):航空安全自愿报告系统.pdf
- 航空安全(民航安全):民航安全管理 (基础篇).pdf
- 民航学院:航空安全(民航安全)——民航安全管理基础篇.pdf
- 航空安全(民航安全):民航法规体系.pdf
- 航空安全(民航安全):保证民航安全的要素.pdf
- 航空安全(民航安全):导论.pdf
- 航空安全(民航安全):序论.pdf
- 东华大学:航空航天(PPT讲稿)人类飞天梦.ppt
- 哈尔滨工业大学:《航天科技概论》课程教学资源(PPT课件讲稿,主讲:张昊春).ppt
- 麻省理工学院:《Robust System Design》Control and noise factors.pdf
- 麻省理工学院:《Robust System Design》analysis of variance anoVa.pdf
- 麻省理工学院:《Robust System Design》Performance characterization Don Clausing.pdf
- 麻省理工学院:《Robust System Design》Constructing Orthogonal arrays.pdf
- 麻省理工学院:《Robust System Design》Standard Orthogonal Arrays.pdf
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Plan for the session.pdf
- 麻省理工学院:《Robust System Design》Term Project Final presentation.pdf
- 麻省理工学院:《Robust System Design》Final Project Questions.pdf
- 麻省理工学院:《Robust System Design》Objectives.pdf
- 麻省理工学院:《Robust System Design》The mahalanobis distance in Character Recognition.pdf
- 麻省理工学院:《Robust System Design》Final exam.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 1: Introduction.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 2: Entropy.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 3: The Sampling theorem.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 4: Quantization.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 5: Source Coding.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lecture 10: Link Budget Analysis and Design.pdf
- 美国麻省理工大学:《Communication Systems Engineering(通讯系统工程)》Lectures 12/13: Channel Capacity and Coding.pdf