《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(19/28)

Fundamentals of Measurement Technology (5) Prof Wang Boxiong
Fundamentals of Measurement Technology (5) Prof. Wang Boxiong

2.3.6 Fast Fourier transform(FFT) The discrete Fourier transform DFT) DF7:X(k)=∑x()=∑x()Wk=01 2232) n=0 k IDFT: x(n) x(k )e 之Y(k)W0 (2233) where W=eN Since x(n) may be complex we can write x()=∑(Rem)evl]-x)]mp+e()kepv+mmD k=0.1,,N-1 (2.234)
The discrete Fourier transform (DFT): where Since x(n) may be complex we can write 2.3.6 Fast Fourier transform (FFT) : ( ) ( ) ( ) 0,1, , 1 1 2 1 = = = − − = − = − DFT X k x n e x n W k N N n o n k N N n o n k N j ( ) ( ) ( ) 0,1, , 1 1 1 : 1 2 1 = = = − − = − − = X k W n N N X k e N IDFT x n N k o nk N N k o nk N j (2.232) (2.233) N j N W e 2 − = ( ) ( ( ) ( ) ) ( ( ) ( ) ) − = = − + + 1 0 N n kn N kn N kn N kn X k Re x n Re WN Im x n Im W j Re x n Re W Im x n Im W k = 0,1,,N −1 (2.234)

2.3.6 Fast Fourier transform FFT From Eq(2.234)it is clear that 1) For each value of k, the direct computation of X(k requires 4N real multiplication and (4N-2) real additions X(h must be computed for n different values of k the direct computation of the discrete Fourier transform of a sequence x(n) requires 4N2 real multiplications and N(4N-2 )real additions or alternatively, N2 complex multiplications and N(N-1) complex additions
From Eq. (2.234) it is clear that 1) For each value of k, the direct computation of X(k) requires 4N real multiplication and (4N-2) real additions. 2) X(k) must be computed for N different values of k, the direct computation of the discrete Fourier transform of a sequence x(n) requires 4N2 real multiplications and N(4N-2) real additions or, alternatively, N2 complex multiplications and N(N-1) complex additions. 2.3.6 Fast Fourier transform (FFT)

2.3.6 Fast Fourier transform FFT For the direct computation of the discrete Fourier transform, 4N2 real multiplications and N(4N-2)real additions are required The amount of computation and thus the computation time, is approximately proportional to n2. so the number of arithmetic operations required to compute the dft by the direct method becomes very large for large values of w x Conclusion: computational procedures that reduce the number of multiplications and additions are of considerable interest
For the direct computation of the discrete Fourier transform, 4N2 real multiplications and N(4N-2) real additions are required. The amount of computation, and thus the computation time, is approximately proportional to N2 , so the number of arithmetic operations required to compute the DFT by the direct method becomes very large for large values of N. ❖Conclusion: computational procedures that reduce the number of multiplications and additions are of considerable interest. 2.3.6 Fast Fourier transform (FFT)

2.3.6 Fast Fourier transform FFT Improving the efficiency of the computation of the dFt exploits one or both of the following special properties of the quantities 1)Symmetry A (2235) 2)Periodicity W=WN Wk+N)n (2236)
Improving the efficiency of the computation of the DFT exploits one or both of the following special properties of the quantities : 1) Symmetry 2) Periodicity 2.3.6 Fast Fourier transform (FFT) kn WN ( ) ( ) * kn N k N n WN = W − (2.235) ( ) (k N )n N k n N N kn WN W W + + = = (2.236)

2.3.6 Fast Fourier transform FFT For example: using the first property, we can group terms in Eq. (2. 234)as Re[x(n)]reloan ]+ Relx(N-n)rely k(N-n +re -m()mv]m(N-n)m-)]=(m()-mzxN-nlmpy by this method the number of multiplications can be reduced by approximately a factor of 2 The second property, 1. e, the periodicity of the complex sequence W, can be employed in achieving significantly greater reductions of the computation
For example: using the first property, we can group terms in Eq. (2.234) as By this method, the number of multiplications can be reduced by approximately a factor of 2. The second property, i.e., the periodicity of the complex sequence , can be employed in achieving significantly greater reductions of the computation. 2.3.6 Fast Fourier transform (FFT) ( ) ( ) ( ) ( ( ) ( )) kn N k N n N kn Re x n Re WN + Re x N − n Re W = Re x n + Re x N − n Re W − ( ) ( ) ( ) ( ( ) ( )) kn N k N n N kn − Im x n Im WN − Im x N − n Im W = − Im x n − Im x N − n Im W − kn WN

2.3.6 Fast Fourier transform FFT In 1965. cooley and tukey published an algorithm for the computation of the discrete Fourier transform that is applicable when N is a composite number; i. e, N is the product of two or more integers. The algorithms are known as fast Fourier transform, or simply FFt algorithms
In 1965, Cooley and Tukey published an algorithm for the computation of the discrete Fourier transform that is applicable when N is a composite number; i.e., N is the product of two or more integers. The algorithms are known as fast Fourier transform, or simply FFT, algorithms. 2.3.6 Fast Fourier transform (FFT)

2.3.6 Fast Fourier transform FFT UThe fundamental principle: decompose the computation of the discrete fourier transform of a sequence of length into successively smaller discrete Fourier transform aTwo basic classes of FFt algorithms decimation-in-time decimation-in-frequency
❑The fundamental principle: decompose the computation of the discrete Fourier transform of a sequence of length into successively smaller discrete Fourier transform. ❑Two basic classes of FFT algorithms: – decimation-in-time – decimation-in-frequency 2.3.6 Fast Fourier transform (FFT)

2.3.6 Fast Fourier transform FFT 1. Decimation-in-Time FFt algorithms Assuming: N=2M separating x(n)into two N/2-point sequence consisting of the even-numbered points in x(n) and the odd-numbered points in x(n). With X(k) given by X(k)=∑x(n)x,k=01…N then X(k)=∑x(nx+∑xn)W n old
1. Decimation-in-Time FFT Algorithms Assuming: separating x(n) into two N/2-point sequence consisting of the even-numbered points in x(n) and the odd-numbered points in x(n). With X(k) given by then 2.3.6 Fast Fourier transform (FFT) M N = 2 ( ) ( ) , 0,1, 1 1 0 = = − − = X k x n W k N N n n k N ( ) = ( ) + ( ) n old nk N n even nk X k x n WN x n W

2.3.6 Fast Fourier transform FFT With the substitution of variables n=2r for n even and n=2r+I for n odd H(k)=∑x(2那3+∑x2r+)WNk =∑x(2)w3y+W∑x(2r+1)Wy (2.237) r=0 r=0 But W=W∠ since W2=e-j(2m/N) e2(M/2)
With the substitution of variables n=2r for n even and n=2r+1 for n odd, But since 2.3.6 Fast Fourier transform (FFT) ( ) ( ) ( ) ( ) ( )( ) ( )( ) − = − = − = − = + = + + = + + 1 2 2 1 2 2 1 2 1 2 2 2 1 2 2 1 2 2 1 N r o r k N N r o k N r k N N r o N r o r N r k N x r W W x r W X k x r W x r W k (2.237) 2 2 WN =WN ( ) ( ) 2 2 2 2 2 N j N j N WN = e = e =W − −
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(18/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(17/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(16/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(15/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(14/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(13/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(12/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(9/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(11/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(10/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(8/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(7/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(6/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(5/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(4/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(3/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(2/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(1/28).ppt
- 河南师范大学——高频电子线路_期末试卷(A).doc
- 《电工技术》课程PPT教学课件(电子教案讲稿)第八章 交流电动机.ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(20/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(21/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(22/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(23/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(24/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(25/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(26/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(28/28).ppt
- 沈阳建筑工程学院《建筑工程概预算》教学课件(混凝土及钢筋混凝土工程).ppt
- 哈尔滨工业大学:《自动控制》历史发展(讲座).pdf
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第1章 电路的基本概念和定律.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第2章 电阻性网络分析的一般方法.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第3章 一阶动态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第4章 正弦稳态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第5章 耦合电感元件合理想变压器.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第6章 二端口网络(双口网).ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第7章 谐振电路.ppt
- 浙江大学:过程控制工程_控制回路的诊断与PID参数整定.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——传热设备控制.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——反应器控制.ppt