《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(17/28)

Fundamentals of Measurement Technology (3) Prof Wang Boxiong
Fundamentals of Measurement Technology (3) Prof. Wang Boxiong

2.2.6. 4 Fourier transforms of power signals 1. Unit impulse function Assuming a rectangular pulse pa(t)of a width A and an amplitude 1/4, its area is equal to1.As△→0, the limit of p4()is called the unit impulse function or delta function P, ( 8(t) △△ Fig. 2. 36 Rectangular pulse function and delta function S(t)
1. Unit impulse function Assuming a rectangular pulse pΔ (t) of a width Δ and an amplitude 1/Δ, its area is equal to 1. As Δ→0, the limit of pΔ (t) is called the unit impulse function or delta function denoted by δ(t). 2.2.6.4 Fourier transforms of power signals Fig. 2.36 Rectangular pulse function and delta function δ(t)

2.2.6. 4 Fourier transforms of power signals o(t is a pulse with unbounded amplitude and zero time duration This impulse function must be treated as a so-called generalized function ☆ Properties: 0V)≈J∞,t=0 (2.96) 0.t≠0 (t)kl(t)=1 (297) The two properties for the impulse function can be conveniently summarized into one defining equation for o(t) x(t)6(t-t0)d=x(t0) provided x(t is continuous at t=to
δ(t) is a pulse with unbounded amplitude and zero time duration. This impulse function must be treated as a so-called generalized function. ❖ Properties: 1) 2) The two properties for the impulse function can be conveniently summarized into one defining equation for δ(t). provided x(t) is continuous at t=t0 . 2.2.6.4 Fourier transforms of power signals = = 0, 0 , 0 ( ) t t t (2.96) ( ) ( ) = 1 − t d t (2.97) − ( ) ( − ) = ( ) 0 0 x t t t dt x t (2.99)

2.2.6. 4 Fourier transforms ofpower signals The Fourier transform of the impulse function a(t) X(O)=F[6(1)=6()em (2.100) Fourier transform pair 6(t)<>1 2.101) XLa Fig. 2.37 d(t) and its Fourier transform
The Fourier transform of the impulse function δ(t): Fourier transform pair: 2.2.6.4 Fourier transforms of power signals ( ) = ( ) = ( ) =1 − − X F t t e dt jt (2.100) (t) 1 (2.101) Fig. 2.37 δ(t) and its Fourier transform

2.2.6. 4 Fourier transforms ofpower signals 6(t-t0)4>e (2.102) ↑△G) slope =-to Fig. 2.38 8(t-to)and its Fourier transform Using the symmetry property, we can derive the transform pairs Foot >27(-O0) (2.103)
2.2.6.4 Fourier transforms of power signals 0 ( ) 0 j t t t e − − (2.102) Fig. 2.38 δ(t-t0 ) and its Fourier transform 2 ( ) 0 0 − j t e Using the symmetry property, we can derive the transform pairs: (2.103)

2.2.6. 4 Fourier transforms ofpower signals 1<>2丌o() (2.104) 0 Fig 2.39 The unity and its Fourier transform
2.2.6.4 Fourier transforms of power signals 1 2 () (2.104) Fig. 2.39 The unity and its Fourier transform

2.2.6. 4 Fourier transforms ofpower signals Furthermore, we have the following relationδ()=δ(t)*x(t)=x(1) (2.105) x(1)*C()=d(1)*x(t) d(Tx(t-rdr x(t) x()*(t-0)=d(t-t0)*x(1)=x(t-10)(2106) x(t) x(t)并b(t) 8(t) O x(t) X(t-t1)=X()*8(t-t1) O Fig. 2. 40 Convolution of an arbitrary function with a unit impulse
Furthermore, we have the following relation: 2.2.6.4 Fourier transforms of power signals x(t) (t) = (t) x(t) = x(t) (2.105) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x t x t d x t t t x t = = − = − ( ) ( ) ( ) ( ) ( ) 0 0 0 x t t − t = t − t x t = x t − t (2.106) Fig. 2.40 Convolution of an arbitrary function with a unit impulse

2.2.6. 4 Fourier transforms of power signals 2 Sinusoidal functions cOS印l÷ e J@oI (2.109) Using the transform pair e o 28(0-Oo We see coSOot e>r[S(@-0o)+8(0+@o)1 (2.10) Similarly, sino2iz[6(o+o。)-6(a-0)(21
2. Sinusoidal functions Using the transform pair we see Similarly, 2.2.6.4 Fourier transforms of power signals 2 cos 0 0 0 j t j t e e t − + = (2.109) 2 ( ) 0 0 − j t e cos ( ) ( ) 0 −0 + +0 t (2.110) sin ( ) ( ) 0 +0 − −0 t j (2.111)

2.2.6. 4 Fourier transforms ofpower signals Xjw) cos wor xGl sin wot 们丌) A 丌 Fig. 2. 42 Sinusoidal functions and their spectra
2.2.6.4 Fourier transforms of power signals Fig. 2.42 Sinusoidal functions and their spectra

2.2.6. 4 Fourier transforms ofpower signals 3. The Signum Function The signum function, denoted by sgn(t) is defined as l,tx(o) then dx(t) f>joX(a Suppose we differentiate the signum function. Its derivative is 20(t) Sgn(t)=20(1)
3. The Signum Function The signum function, denoted by sgn(t), is defined as If then Suppose we differentiate the signum function. Its derivative is 2δ(t): 2.2.6.4 Fourier transforms of power signals = − = 1, 0 0, 0 1, 0 sgn( ) t t t t (2.112) x(t) X () ( ) ( ) jX dt dx t sgn(t) 2 (t) dt d =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(16/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(15/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(14/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(13/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(12/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(9/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(11/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(10/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(8/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(7/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(6/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(5/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(4/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(3/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(2/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(1/28).ppt
- 河南师范大学——高频电子线路_期末试卷(A).doc
- 《电工技术》课程PPT教学课件(电子教案讲稿)第八章 交流电动机.ppt
- 《电工技术》课程PPT教学课件(电子教案讲稿)第七章 磁路与铁心线圈电路.ppt
- 《电工技术》课程PPT教学课件(电子教案讲稿)第六章 电路的暂态分析.ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(18/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(19/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(20/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(21/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(22/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(23/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(24/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(25/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(26/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(28/28).ppt
- 沈阳建筑工程学院《建筑工程概预算》教学课件(混凝土及钢筋混凝土工程).ppt
- 哈尔滨工业大学:《自动控制》历史发展(讲座).pdf
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第1章 电路的基本概念和定律.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第2章 电阻性网络分析的一般方法.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第3章 一阶动态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第4章 正弦稳态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第5章 耦合电感元件合理想变压器.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第6章 二端口网络(双口网).ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第7章 谐振电路.ppt
- 浙江大学:过程控制工程_控制回路的诊断与PID参数整定.ppt