《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(23/28)

Fundamentals of Measurement Technology Prof Wang Boxiong
Fundamentals of Measurement Technology (9) Prof. Wang Boxiong

4.6 Inductive transducers Inductive transducers are based on the voltage output of an inductor (or coil) whose inductance changes in response to changes in the measurand a classification of inductive transducers 1. Variable self-inductance a. Single coil(simple variable permeance) b. Two coil (or single coil with center tap) connected for inductance ratio 2. Variable mutual inductance a. simple two coi b. Three coil (using series opposition) 3. Variable reluctance a. Moving iron b. Moving coil C. Moving magnet
• Inductive transducers are based on the voltage output of an inductor (or coil) whose inductance changes in response to changes in the measurand. • A classification of inductive transducers : 1. Variable self-inductance a. Single coil (simple variable permeance) b. Two coil (or single coil with center tap) connected for inductance ratio 2. Variable mutual inductance a. Simple two coil b. Three coil (using series opposition) 3. Variable reluctance a. Moving iron b. Moving coil c. Moving magnet 4.6 Inductive transducers

4.6. 1 Self-inductance arrangements 1. Simple permeance-varying A simple permeance -varying transducer is composed of an iron core. a coil and an armature an air ga is arranged between the core and the armature when a current i flows through the coil, a magnetic flux m is generated within it, whose magnitude is proportional to the current z Won=li (4.22) where number fo turns self inductance
1. Simple permeance-varying 4.6.1 Self-inductance arrangements A simple permeance-varying transducer is composed of an iron core, a coil and an armature. An air gap is arranged between the core and the armature. When a current i flows through the coil, a magnetic flux m is generated within it, whose magnitude is proportional to the current i : W Li m = (4.22) where W = number fo turns L = self inductance (H )

4.6.1 Self-inductance arrangements I-coil 2-core armature b Fig. 4.15 Principle of permeance-varying transducer
4.6.1 Self-inductance arrangements Fig. 4.15 Principle of permeance-varying transducer 1-coil 2-core 3-armature

4.6.1 Self-inductance arrangements Also according to ohms law of magnetic circuit Wi (423) R where Wi=magnetic motive force R m reluctance H Substituting eq (4.23)into Eq (4.22) yields W L (424) R
Also according to Ohm’s law of magnetic circuit m m R W i = (4.23) where Wi = magnetic motive force (A ) Rm = reluctance ( −1 H ) Substituting Eq. (4.23) into Eq. (4.22) yields Rm W L 2 = (4.24) 4.6.1 Self-inductance arrangements

4.6.1 Self-inductance arrangements Neglecting the iron loss in the magnetic loop and assuming the air gap is small, then the total reluctance of the magnetic circuit 126 R (425) A where / length of the iron circuit ( m u=permeability of the iron core f /m A =crOSs-sectional area of the iron, A=ab(m) length of the air gaps() Ho=permeabiltiy of free space( vacuum)Ao =4T X10(H/m Ao =cross-sectional area of the air gap(
Neglecting the iron loss in the magnetic loop and assuming the air gap is small, then the total reluctance of the magnetic circuit: 0 0 2 A A l Rm = + (4.25) where l = length of the iron circuit (m ) = permeability of the iron core (H / m ) A = cross-sectional area of the iron, ) 2 A = a b(m = length of the air gaps (m ) 0 = permeabiltiy of free space ( vacuum) 4 10 ( / ) 7 0 H m − = A0 = cross-sectional area of the air gap ( 2 m ) 4.6.1 Self-inductance arrangements

4.6.1 Self-inductance arrangements Since the first term at the right-hand side of eq.(4.25), the reluctance of the iron is much smaller than the second term the reluctance of the air gap then the total reluctancem, with the first term neglected, is approximately 26 (426)
Since the first term at the right-hand side of Eq. (4.25), the reluctance of the iron, is much smaller than the second term, the reluctance of the air gap, then the total reluctance R m , with the first term neglected, is approximately 0 0 2 A Rm (4.26) 4.6.1 Self-inductance arrangements

4.6.1 Self-inductance arrangements Substituting Eq. (4.26)into Eq.(4.24)gives (427) 2 The self-inductance is proportional to the cross-sectional area of the air gap Ao, and is inversely proportional to the length of the air gap
Substituting Eq. (4.26) into Eq. (4.24) gives 2 0 0 2 2 W A L = (4.27) The self-inductance is proportional to the cross-sectional area of the air gap, A0 , and is inversely proportional to the length of the air gap, . 4.6.1 Self-inductance arrangements

4.6.1 Self-inductance arrangements The sensitivity of the transducer dL w S (428) ds 2 Sensitivity s is inversely proportional to 8.As is not a constant, nonlinearity will occur. This kind of transducers operate often over a range of small change in the air gap
The sensitivity of the transducer 2 0 0 2 2 W A d dL S = = − (4.28) Sensitivity S is inversely proportional to 2 . As is not a constant, nonlinearity will occur. This kind of transducers operate often over a range of small change in the air gap. 4.6.1 Self-inductance arrangements

4.6.1 Self-inductance arrangements From Eq (4.28)we obtian WuoA WuoA WuoA △6 S 04-0 0410 262 2(0+△)2N 26 If there is a very small air gap, that is,△δ<<δo, the sensitivity s can be further approximated as W-LoA S (429) 26
From Eq. (4.28) we obtian (1 2 ) 2 2( ) 2 0 2 0 0 0 2 2 0 0 0 2 2 0 0 2 − + = − = − W A W A W A S If there is a very small air gap, that is, 0 , the sensitivity S can be further approximated as 2 0 0 0 2 2 W A S = (4.29) 4.6.1 Self-inductance arrangements
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(22/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(21/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(20/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(19/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(18/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(17/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(16/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(15/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(14/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(13/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(12/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(9/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(11/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(10/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(8/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(7/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(6/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(5/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(4/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(3/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(24/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(25/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(26/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(28/28).ppt
- 沈阳建筑工程学院《建筑工程概预算》教学课件(混凝土及钢筋混凝土工程).ppt
- 哈尔滨工业大学:《自动控制》历史发展(讲座).pdf
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第1章 电路的基本概念和定律.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第2章 电阻性网络分析的一般方法.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第3章 一阶动态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第4章 正弦稳态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第5章 耦合电感元件合理想变压器.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第6章 二端口网络(双口网).ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第7章 谐振电路.ppt
- 浙江大学:过程控制工程_控制回路的诊断与PID参数整定.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——传热设备控制.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——反应器控制.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——流体输送设备控制.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——精馏塔控制.ppt
- 过程控制工程_习题-6-2.doc
- 过程控制工程_习题-6-3.doc