《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(20/28)

Fundamentals of Measurement Technology (6) Prof Wang Boxiong
Fundamentals of Measurement Technology (6) Prof. Wang Boxiong

3.4 Dynamic characteristics of measuring systems FOr dynamic measurement, the measuring system must be a linear one We can only process linear systems mathematically It is rather difficult to perform nonlinear corrections in situations of dynamic measurement a Practical systems may be considered as linear systems within a certain range of operation and permissible error limits lt is of general significance to study linear systems
❑For dynamic measurement, the measuring system must be a linear one. ▪ We can only process linear systems mathematically. ▪ It is rather difficult to perform nonlinear corrections in situations of dynamic measurement. ▪ Practical systems may be considered as linear systems within a certain range of operation and permissible error limits. ❖It is of general significance to study linear systems. 3.4 Dynamic characteristics of measuring systems

3.4.1 Mathematical representation of linear systems uThe input-output relationship of a linear system d n-1 ∴+a d dx(t (3.3) m-1 +…+b +box() where x(t=input of the system y(t=output of the system an, al, ao, and bm, b1, bo are systems parameters Ua linear constant-coefficient system or linear time-invariant(LTD) system: the parameters are constants
❑The input-output relationship of a linear system: where x(t)= input of the system y(t)= output of the system an , a1 , a0 , and bm, b1 , b0 are system’s parameters. ❑A linear constant-coefficient system or linear time-invariant (LTI) system: the parameters are constants. 3.4.1 Mathematical representation of linear systems ( ) ( ) ( ) ( ) ( ) ( ) ( ) b x(t) dt dx t b dt d x t b dt d x t b a y t dt dy t a dt d y t a dt d y t a m m m m m m n n n n n n 1 0 1 1 1 1 0 1 1 1 = + + + + + + + + − − − − − − (3.3)

3.4.1 Mathematical representation of linear systems 日 Properties 1. Superposition property(superposability) If for x1()->y ()→>y2( then x,((+x2()->y,()+y2(t) (3.4) 2. Proportional x(t)→ en ax(t)→>ay(t) (3.5) Where a is a constant
❑ Properties: 1. Superposition property (superposability): If for then 2. Proportionality If then Where a is a constant. 3.4.1 Mathematical representation of linear systems x (t) y (t) 1 → 1 x (t) y (t) 2 → 2 x (t) x (t) y (t) y (t) 1 + 2 → 1 + 2 (3.4) x(t)→ y(t) ax(t)→ ay(t) (3.5)

3.4.1 Mathematical representation of linear systems 3. Differentiation x(t)→y(t) dx(t)、d(t then 4. Integration fx()->y(t) and for a zero initial condition of the system then x()→y(h
3. Differentiation If then 4. Integration If and for a zero initial condition of the system, then 3.4.1 Mathematical representation of linear systems x(t)→ y(t) ( ) ( ) dt dy t dt dx t → (3.6) x(t)→ y(t) ( ) ( ) → t t x t dt y t dt 0 0 (3.7)

3.4.1 Mathematical representation of linear systems 5. Frequency preservability f →)y(t and for x(t=xejot then the output j(at+)
5. Frequency preservability If and for then the output 3.4.1 Mathematical representation of linear systems x(t)→ y(t) ( ) j t x t x e = 0 ( ) ( + ) = j t y t y e0

3.4.1 Mathematical representation of linear systems Proof: According to the proportionality property 2 x(t)→>O (38) According to the differentiation property (3.9) dt d x(t oxt+ oy (3.10) Since x(t J d2x(o) Jo)xoe
Proof: According to the proportionality property According to the differentiation property Since 3.4.1 Mathematical representation of linear systems x(t) y(t) 2 2 → (3.8) ( ) ( ) 2 2 2 2 dt dy t dt d x t → (3.9) ( ) ( ) ( ) ( ) → + + 2 2 2 2 2 2 dt dy t y t dt d x t x t (3.10) ( ) j t x t x e = 0 ( ) ( ) x(t) x e j x e dt d x t j t j t 2 0 2 0 2 2 2 = − = − =

3.4.1 Mathematical representation of linear systems Letting the left-hand side of eq. 3.10) be zero dolt 2x(t)+ then the right-hand side of eq ( 3.10) must also be zero 0 y(t)+ t Solving the equation yields yoe J(at+o where is the phase shift
Letting the left-hand side of Eq. (3.10) be zero, then the right-hand side of Eq. (3.10) must also be zero, Solving the equation yields: where φ is the phase shift. 3.4.1 Mathematical representation of linear systems ( ) ( ) 0 2 2 2 + = dt d x t x t ( ) ( ) 0 2 2 2 + = dt d y t y t ( ) ( + ) = j t y t y e0

3.4.2 Representation of system's characteristics in terms of transfer function or frequency response 1。 Transfer function 日 Definition: For tso, y(t=0, the Laplace transform Y(s) (3.1 of y(t) is defined as y(o e where s is the laplace operator: s=a+jb for a>0
1. Transfer function ❑ Definition: For t0, y(t)=0, the Laplace transform Y(s) of y(t) is defined as where s is the Laplace operator: s=a+jb for a>0. 3.4.2 Representation of system’s characteristics in terms of transfer function or frequency response ( ) ( ) − = 0 Y s y t e dt st (3.11)

3.4.2 Representation of system 's characteristics in terms of transfer function or frequency response If all the systems initial conditions are zero, making Laplace transform of Eg (3.3) gives then the expression y(slans"+amS+.+a,s+ao X((bns"+bnsm+…+b1s+b。) The transfer function H(s) y(s)bm5+bm-ISm-++b,5+b H 1 (3.12) )as"+as 十a1S+a 0 The transfer function H(s) represents the transfer characteristics of a system
If all the system’s initial conditions are zero, making Laplace transform of Eq. (3.3) gives then the expression The transfer function H(s): ❖The transfer function H(s) represents the transfer characteristics of a system. 3.4.2 Representation of system’s characteristics in terms of transfer function or frequency response ( )( ) ( )( ) 1 0 1 1 1 0 1 1 X s b s b s b s b Y s a s a s a s a m m m m n n n n = + + + + + + + + − − − − ( ) ( ) ( ) 1 0 1 1 1 0 1 1 a s a s a s a b s b s b s b X s Y s H s n n n n m m m m + + + + + + + + = = − − − − (3.12)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(19/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(18/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(17/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(16/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(15/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(14/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(13/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(12/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(9/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(11/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(10/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(8/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(7/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(6/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(5/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(4/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(3/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(2/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(1/28).ppt
- 河南师范大学——高频电子线路_期末试卷(A).doc
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(21/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(22/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(23/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(24/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(25/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(26/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(28/28).ppt
- 沈阳建筑工程学院《建筑工程概预算》教学课件(混凝土及钢筋混凝土工程).ppt
- 哈尔滨工业大学:《自动控制》历史发展(讲座).pdf
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第1章 电路的基本概念和定律.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第2章 电阻性网络分析的一般方法.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第3章 一阶动态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第4章 正弦稳态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第5章 耦合电感元件合理想变压器.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第6章 二端口网络(双口网).ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第7章 谐振电路.ppt
- 浙江大学:过程控制工程_控制回路的诊断与PID参数整定.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——传热设备控制.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——反应器控制.ppt
- 浙江大学:过程控制工程_典型操作单元的控制——流体输送设备控制.ppt