《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(16/28)

Fundamentals of Measurement Technology Prof Wang Boxiong
Fundamentals of Measurement Technology (2) Prof. Wang Boxiong

2. 2. 4 Frequency representation of periodic signals In a finite interval of time, a periodic signal x(t)can be represented by its fourier series when it complies with the Dirichlet conditions a (t)=+2(a, cosnoot+ bm, sin noot) (2.12) Where 2c7/2 x(tcos nootdi (213) T/2 b x(tsin n@tdt (214) TJ7/2 n=0,1,2,3, 7= the period Wo= the angular frequency or circular frequency Wo=2TT/T an (including ao and bn)are called Fourier coefficients
In a finite interval of time, a periodic signal x(t) can be represented by its Fourier series when it complies with the Dirichlet conditions: where n=0,1,2,3,…… T= the period ω0= the angular frequency or circular frequency ω0= 2π/T an(including a0 and bn ) are called Fourier coefficients. 2.2.4 Frequency representation of periodic signals = = + + 1 0 0 0 ( cos sin ) 2 ( ) n n n a n t b n t a x t (2.12) − = / 2 / 2 0 ( ) cos 2 T T n x t n tdt T a (2.13) − = / 2 / 2 0 ( )sin 2 T T n x t n tdt T b (2.14)

2. 2. 4 Frequency representation of periodic signals Fourier coefficients an and bn(functions of nwo) a an: even function of n or nwo, a-n=an bn: odd function of n or nwo, b-n=-bn Dirichlet conditions x <OO X(t must be absolutely integrable, X(t possesses a finite number of maxima and minima and finite number of discontinuities in any finite interval
Fourier coefficients an and bn (functions of nω0 ): ▪ an : even function of n or nω0 , a-n = an . ▪ bn : odd function of n or nω0 , b-n = -bn . Dirichlet conditions: ▪ x(t) must be absolutely integrable, ▪ x(t) possesses a finite number of maxima and minima and finite number of discontinuities in any finite interval. 2.2.4 Frequency representation of periodic signals − x(t) dt

2. 2. 4 Frequency representation of periodic signals Rewrite Eq(2. 12) x()=0+∑A,cos(mot+q) (215) Where An=van+b b.、n=1,2 (2.16 arc An: amplitude of signal's frequency component Pn: phaseshift 1,2 (2.17) bn=-A, sin
Rewrite Eq. (2.12): where An : amplitude of signal’s frequency component φn : phase-shift 2.2.4 Frequency representation of periodic signals = = + + 1 0 0 cos( ) 2 ( ) n n n A n t a x t (2.15) 1,2, ( ) 2 2 = = − = + n a b arctg A a b n n n n n n (2.16) 1,2, sin cos = = − = n b A a A n n n n n n (2.17) A−n = An −n =n

2. 2. 4 Frequency representation of periodic signals u a2 is the constant-value or the d. c component of a periodic signal o The term for na 1 is referred to as the fundamenta (component), or as the first harmonic component a the component for n=N is referred to as the Nth harmonic component u The representation of a periodic signal in the form of Eq( 2.15)is referred to as the Fourier series representation An: amplitude of the nth harmonic component Pn: phase shift of the nth harmonic component
❑ a0 /2 is the constant-value or the d.c. component of a periodic signal. ❑ The term for n=1 is referred to as the fundamental (component), or as the first harmonic component. ❑ The component for n=N is referred to as the Nth harmonic component. ❑ The representation of a periodic signal in the form of Eq. (2.15) is referred to as the Fourier series representation: ▪ An : amplitude of the nth harmonic component ▪ φn : phase shift of the nth harmonic component 2.2.4 Frequency representation of periodic signals

2. 2. 4 Frequency representation of periodic signals O The plots of the amplitude An and the phase Pn versus signals angular frequency wo are called amplitude spectrum plot and phase spectrum plot respectively UThe frequency spectrum is displayed graphically by a number of discrete vertical lines representing the amplitude An and the phase n of the analyzed signal respectively The frequency spectrum of a periodic signal is a discrete one
❑The plots of the amplitude An and the phase φn versus signal’s angular frequency ω0 are called amplitude spectrum plot and phase spectrum plot respectively. ❑The frequency spectrum is displayed graphically by a number of discrete vertical lines representing the amplitude An and the phase φn of the analyzed signal respectively. ❖The frequency spectrum of a periodic signal is a discrete one. 2.2.4 Frequency representation of periodic signals

2. 2. 4 Frequency representation of periodic signals Example 1 Find the Fourier series of the periodic square wave signal x(t)shown in Fig. 2. 11 (t) Fig. 2. 11 Periodic square wave signal
Example 1. Find the Fourier series of the periodic square wave signal x(t) shown in Fig. 2.11. 2.2.4 Frequency representation of periodic signals Fig. 2.11 Periodic square wave signal

2. 2. 4 Frequency representation of periodic signals Solution: Within one period, signal x(t)can be expressed as <t<0 x(t) 0<t< According to Eqs.(2.13)and(2.14) x(tcosnootdt=0 T/2 x(tsin noo tdt (1)sin n@o tdt+ sin noo tdt 2|1 T/2 cos n@ot T/2 (cos nooD no 2 cOS nT n=2.4.6
Solution: Within one period, signal x(t) can be expressed as According to Eqs. (2.13) and (2.14) 2.2.4 Frequency representation of periodic signals − − = 2 1, 0 0 2 1, ( ) T t t T x t − = = / 2 / 2 ( ) cos 0 0 2 T T n x t n tdt T a = = = = − = + − = − + = − − − 0, 2,4,6 , 1,3,5, 4 1 cos 2 ( cos ) 1 cos 2 1 ( 1)sin sin 2 ( )sin 2 / 2 0 0 0 0 0 / 2 0 / 2 0 0 0 / 2 0 / 2 / 2 0 n n n n n n t n n t T n n tdt n tdt T x t n tdt T b T T T T T T n

2. 2. 4 Frequency representation of periodic signals The Fourier series expression of the square wave sIgnal x(t)=-(siot+si300t+-sn5001+…) A 7a0 na Fig. 2. 12 Frequency spectrum of periodic square wave signal
The Fourier series expression of the square wave signal 2.2.4 Frequency representation of periodic signals sin 5 ) 5 1 sin 3 3 1 (sin 4 ( ) x t = 0 t + 0 t + 0 t + Fig. 2.12 Frequency spectrum of periodic square wave signal

2. 2. 4 Frequency representation of periodic signals FOurier series can be used to approximate a signal sin t (sint+asin3t) 0丌 3t+-sin5t) Fig. 2. 13 Approximations of a square wave signal using sums of partial terms of Fourier series
❑Fourier series can be used to approximate a signal. 2.2.4 Frequency representation of periodic signals Fig. 2.13 Approximations of a square wave signal using sums of partial terms of Fourier series
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(15/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(14/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(13/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(12/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(9/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(11/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(10/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(8/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(7/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(6/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(5/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(4/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(3/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(2/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)测试技术(1/28).ppt
- 河南师范大学——高频电子线路_期末试卷(A).doc
- 《电工技术》课程PPT教学课件(电子教案讲稿)第八章 交流电动机.ppt
- 《电工技术》课程PPT教学课件(电子教案讲稿)第七章 磁路与铁心线圈电路.ppt
- 《电工技术》课程PPT教学课件(电子教案讲稿)第六章 电路的暂态分析.ppt
- 《电工技术》课程PPT教学课件(电子教案讲稿)第五章 非正弦周期电流电路.ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(17/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(18/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(19/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(20/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(21/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(22/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(23/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(24/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(25/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(26/28).ppt
- 《测试与检测技术基础》课程电子教案(PPT教学课件)Fundamentals of Measurement Technology(28/28).ppt
- 沈阳建筑工程学院《建筑工程概预算》教学课件(混凝土及钢筋混凝土工程).ppt
- 哈尔滨工业大学:《自动控制》历史发展(讲座).pdf
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第1章 电路的基本概念和定律.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第2章 电阻性网络分析的一般方法.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第3章 一阶动态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第4章 正弦稳态电路分析.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第5章 耦合电感元件合理想变压器.ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第6章 二端口网络(双口网).ppt
- 《电路分析基础》课程教学资源(PPT课件讲稿)PPT课件_第7章 谐振电路.ppt