《随机预算与调节》(英文版)Lecture 18 Last time: Semi-free configuration design

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander velde Lecture 18 Last time: Semi-free configuration design This is equivalent to H6cr○e D(s) perhaps B). We must stabilize F if it is given as unstabe e desig e (and lote n, s enter the system at the same place. F is fixed C(s) 1+C(S)F(SB(s) so that having the optimum H, we determine C from (s) 1-H(SF(S)B(S) We do not collect H and F together because if F is non-minimum phase, we would not wish to define h by H_(HFopt This leads to an unstable mode which is not observable at the output-thus cannot be controlled by feeding back Associate weighting functions with the given transfer functions F(s)→wF(1) D(s)→>D(1)
16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 1 of 5 Lecture 18 Last time: Semi-free configuration design This is equivalent to: Note n s, enter the system at the same place. F is fixed. We design C (and perhaps B). We must stabilize F if it is given as unstable. ( ) ( ) 1 () () () C s H s CsFsBs = + so that having the optimum H , we determine C from ( ) ( ) 1 () () () H s C s H sFsBs = − We do not collect H and F together because if F is non-minimum phase, we would not wish to define H by ( )opt HF H F = This leads to an unstable mode which is not observable at the output – thus cannot be controlled by feeding back. Associate weighting functions with the given transfer functions. () () () () () () H F D Hs w t Fs w t Ds w t → → →

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander Velde If F(s)is unstable, put a stabilizing feed back around it, later associate it with the rest of the system Error analysis We require the mean squared error c(1)=|vn(x1)(-x1)dr o(1)=v(z2)c(1-22)dr2 dr, p(t2) dr,wu()(t-T,-r2) d(O=」w(z3)(t e()=0()-d(1) e(t)2=o(1)2-2o(1)d(1)+d()2 ∫drvn(z)jarw(2)drn()jd(x.)(-x1-)(-2-) =dr, w(r, dr,w, (t2) dr,wn(t,) dr,w (T,R, (T,+T2-T3-r) o(Od(o=j dr, w,(r] dr we, (r i(-=- -, j dr, wo(r. st-r,) dw")Jdw()y(5)(-x=(-5) jdr,wn( dr wE(r,)dr, wD(t,R,(r,+T2-T3) We shall not require d(r) in integral form
16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 2 of 5 If F s( ) is unstable, put a stabilizing feedback around it, later associate it with the rest of the system. Error Analysis We require the mean squared error. 1 11 2 22 2 2 1 1 12 3 33 22 2 () ( )( ) () ( )( ) ( ) ( )( ) () ( )( ) () () () () () 2 () () () H F F H D ct w it d ot w ct d d w d w it dt w st d et ot dt et ot otdt dt τ ττ τ ττ τ τ τ τ ττ τ ττ ∞ −∞ ∞ −∞ ∞ ∞ −∞ −∞ ∞ −∞ = − = − = −− = − = − =− + ∫ ∫ ∫ ∫ ∫ 2 2 2 1 1 12 4 4 3 3 34 1 1 2 2 3 3 4 4 12 34 11 22 33 () ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( ) () () () FH FH HFHF HFH ot d w d w it d w d w it d w d w d w d w it it dw dw dw d τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ τ τ τ ττ ττ ττ ττ ττ ∞∞ ∞∞ −∞ −∞ −∞ −∞ ∞∞ ∞ ∞ −∞ −∞ −∞ −∞ ∞ ∞ −∞ −∞ ⎡ ⎤⎡ ⎤ = −− −− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ = −− −− = ∫∫ ∫∫ ∫∫∫∫ ∫ ∫ 4 4 1234 ()( ) w R F ii τ τ ττττ ∞ ∞ −∞ −∞ +−− ∫ ∫ 2 2 1 1 12 3 3 3 1 1 2 2 3 3 12 3 1 1 2 2 3 3 123 () () ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) () () () ( ) FH D HFD H F D is otdt d w d w it d w st d w d w d w it st dw dw dw R τ τ τ τ ττ τ τ τ τ τ τ τ τ τ ττ τ τ τ τ τ τ τ τττ ∞∞ ∞ −∞ −∞ −∞ ∞∞ ∞ −∞ −∞ −∞ ∞∞ ∞ −∞ −∞ −∞ ⎡ ⎤⎡ ⎤ = −− − ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ = −− − = +− ∫∫ ∫ ∫∫∫ ∫∫∫ We shall not require 2 d t( ) in integral form

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander velde The problem now is to choose wu(t)so as to minimize this e(t), for which we use variational calculus Let vB(1)=0(1)+ov() where wo(t) is the optimum weighting function( to be determined)and dw(t)is an arbitrary variation -arbitrary except that it must be physically realizable Calculate the optimum e and its first and second variations e-=e+se+s =o(1)2+20(1)d(1)+d(1) The optimum e(e for &w(1)=0) e(0o= dr,wo(r,) dr,wr(t2) dr wo(r) dT4WE(T4)R, (T, +T2-T3-t) 2 dr, wo(r,) w (t2) dr wp(t,)R, ([+T2-t3)+d() The first variation in e(t)2is Se('=dt, Sw(r) dr wF(2)dr wo(r3) dt,wE(T),(4,+T2-t3-T) ∫drvs()jdze(a)∫arn(n)Jdt"()尺(+x2-2-) -2 dr, Sw(r dr wr(r2) dr wp(r)R, (r,+T2-t3) In the second term, let: and interchange the order of integration 2nd term=dr sw(r,dri w(2)dr'w'() drw (EaR, (t'+r'-ri'-t2)
16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 3 of 5 The problem now is to choose ( ) w t H so as to minimize this 2 e t( ) , for which we use variational calculus. Let: 0 () () () w t w t wt H = + δ where 0 w t( ) is the optimum weighting function (to be determined) and δw t( ) is an arbitrary variation – arbitrary except that it must be physically realizable. Calculate the optimum 2 e and its first and second variations. 2 2 2 22 0 22 2 () 2 () () () ee e e e ot otdt dt =+ + δ δ =+ + The optimum 2 e ( 2 e for δw t() 0 = ): 2 0 10 1 2 2 30 3 4 4 1 2 3 4 2 10 1 2 2 3 3 1 2 3 () ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) () F F ii F D is et d w d w d w d w R d w d w d w R dt τ τ τ τ τ τ τ τ ττττ τ τ τ τ τ τ τττ ∞∞ ∞ ∞ −∞ −∞ −∞ −∞ ∞∞ ∞ −∞ −∞ −∞ = +−− − +− + ∫∫ ∫∫ ∫∫ ∫ The first variation in 2 e t( ) is 2 1 1 2 2 30 3 4 4 1 2 3 4 10 1 2 2 3 3 4 4 1 2 3 4 1 1 2 2 3 3 123 () ( ) ( ) ( ) ( ) ( ) () () () () ( ) 2 () () () ( ) F F ii F F ii F D is et d w d w d w d w R dw dw d w dw R d w dw dw R δ τδ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τδ τ τ τ τ τ τ τ τδ τ τ τ τ τ τ τ τ ∞ ∞ ∞∞ −∞ −∞ −∞ −∞ ∞∞ ∞ ∞ −∞ −∞ −∞ −∞ ∞∞ ∞ −∞ −∞ −∞ = +−− + +−− − +− ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫∫ In the second term, let: 1 3 2 4 3 1 4 2 τ τ τ τ τ τ τ τ = ′ = ′ = ′ = ′ and interchange the order of integration. 2nd term 1 1 2 2 30 3 4 4 3 4 1 2 () () () () ( ) F F ii d w dw dw dw R τ δτ τ τ τ τ τ τ τ τ τ τ ∞ ∞ ∞∞ −∞ −∞ −∞ −∞ = +−− ′ ′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ∫∫ ∫∫

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander velde but since R,(t'+t4--T2=R,(G+r,) we see that the second term is exactly equal to the first term. Collecting these terms and separating out the common integral with respect to t, gives ∫dn-()drya()R(+2-x) The second variation of e(is 8e(0'=dt, w(r)dr wr(r2) dt, w(t,) dr, wA(T)R,(r, +T2-r, -t By comparison with the expression for o(t), this is seen to be the mean squared output of the system output (output)=8e(0)>0, non-zero input This second variation must be greater than zero, so the stationary point defined by the vanishing of the first variation is shown to be a minimum In the expression for the first variation, Ow(T,)=0 for t, <0 by the requirement that the variation be physically realizable. But Sw(t,) is arbitrary for t, 20,so we can be assured of the vanishing of &e(0 only if the( term vanishes almost everywhere for t, 20. The condition which defines the minimum in e(t) is then jdr,wr(z2)dr, wo(t,) dr,wE(TA)R, (4+t2-t3-z4) dr]wF(r2) dr, wp(r3)R, (T,+T2-T3)=0 for all t. non-real-time Using this condition in the expression for e(0 and remembering that wo(1)=0 for t<o gives the result
16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 4 of 5 but since 3412 1234 ( )( ) R R ii ii τ ′′′′ ′′′′ + −− = + −− τττ ττττ we see that the second term is exactly equal to the first term. Collecting these terms and separating out the common integral with respect to 1 τ gives 2 1 1 2 2 30 3 4 4 1 2 3 4 2 2 3 3 123 () 2 ( ) ( ) ( ) ( ) ( ) () () ( ) F F ii F D is et d w d w d w d w R dw dw R δ τδ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τττ ∞ ∞ ∞∞ −∞ −∞ −∞ −∞ ∞ ∞ −∞ −∞ ⎧ = +−− ⎨ ⎩ ⎫ − +− ⎬ ⎭ ∫ ∫ ∫∫ ∫ ∫ The second variation of 2 e t( ) is 2 2 1 1 2 2 3 3 4 4 1234 () ( ) ( ) ( ) ( ) ( ) F F ii δ et d w d w d w d w R τδ τ τ τ τδ τ τ τ τ τ τ τ ∞∞ ∞ ∞ −∞ −∞ −∞ −∞ = +−− ∫∫∫∫ By comparison with the expression for 2 o t( ) , this is seen to be the mean squared output of the system ( )2 2 2 output ( ) 0, non-zero input = > δ e t This second variation must be greater than zero, so the stationary point defined by the vanishing of the first variation is shown to be a minimum. In the expression for the first variation, 1 δw() 0 τ = for 1 τ < 0 by the requirement that the variation be physically realizable. But 1 δw( ) τ is arbitrary for 1 τ ≥ 0 , so we can be assured of the vanishing of 2 δ e t( ) only if the { } term vanishes almost everywhere for 1 τ ≥ 0 . The condition which defines the minimum in 2 e t( ) is then 2 2 30 3 4 4 1 2 3 4 2 2 3 3 123 () () () ( ) () () ( ) 0 F F ii F D is dw dw dw R dw dw R τ τ τ τ τ τ ττττ τ τ τ τ τττ ∞ ∞∞ −∞ −∞ −∞ ∞ ∞ −∞ −∞ +−− − +− = ∫ ∫∫ ∫ ∫ for all 1 τ , non-real-time. Using this condition in the expression for 2 0 e t( ) and remembering that 0 w t() 0 = for t < 0 gives the result

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander Velde (=d(1)2-o( which is convenient for the calculation of e(0) Also since o(0o=d(o-e(0, this says the optimum mean squared output always less than the mean squared desired output. Autocorrelation functions We have arrived at an extended form of the Wiener-Kopf equation which defines the optimum linear system under the ground rules stated before Recall that. R (r)=r()+R(r)+r(r)+r(t) R2(r)=R2(r)+Rn() The free configuration problem is a specialization of the semi-free configuration In this expressic would take F(s)=l, or w(0)=8(0). In that case we have ∫d:d()Jdrw(x)4;(r,R(r r3-4 dz2(2)dr3w(3)R2(x1+22-3)= Wo(T),(T-T)dr, -wp(I,)R (T-T3)dr=0 for T, 20
16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 5 of 5 2 22 0 0 et dt ot () () () = − which is convenient for the calculation of 2 0 e t( ) . Also since 2 22 0 0 ot dt et () () () = − , this says the optimum mean squared output is always less than the mean squared desired output. Autocorrelation Functions We have arrived at an extended form of the Wiener-Kopf equation which defines the optimum linear system under the ground rules stated before. Recall that: () () () () () () () () ii ss sn ns nn is ss ns RRR RR RRR τ ττττ τττ =+++ = + since i sn = + . The free configuration problem is a specialization of the semi-free configuration. In this expression we would take F s() 1 = , or () () wt t F = δ . In that case we have 2 2 30 3 4 4 1 2 3 4 22 3 3 123 03 1 3 3 3 1 3 3 1 () () () ( ) () () ( ) ( ) ( ) ( ) ( ) 0 for 0 ii D is ii D is dd dw d R d dw R wR d w R d τ τ τ τ τδτ τ τ τ τ τδτ τ τ τ τ τ τ τττ τ τττ τ ∞∞ ∞ −∞ −∞ −∞ ∞ ∞ −∞ −∞ ∞ ∞ −∞ −∞ +−− − +− = −− −= ≥ ∫∫ ∫ ∫ ∫ ∫ ∫
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《随机预算与调节》(英文版)Lecture 16 Last time: Wide band input.pdf
- 《随机预算与调节》(英文版)Lecture 15 Last time: Compute the spectrum and integrate to get the mean squared value.pdf
- 《随机预算与调节》(英文版)Lecture 11 Last time: Ergodic processes.pdf
- 《随机预算与调节》(英文版)Lecture 13 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 9 Last time: Linearized error propagation.pdf
- 《随机预算与调节》(英文版)Lecture 10 Last time: Random Processes.pdf
- 《随机预算与调节》(英文版)Lecture 12 Non-zero power at zero frequency.pdf
- 《随机预算与调节》(英文版)Lecture 6 Example: Sumn of two independent random variables.pdf
- 《随机预算与调节》(英文版)Lecture 8 ast time: Multi-dimensional normal distribution.pdf
- 《随机预算与调节》(英文版)Lecture 7 Last time: Moments of the Poisson distribution from its generating function.pdf
- 《随机预算与调节》(英文版)Lecture 4 Last time: Left off with characteristic.pdf
- 《随机预算与调节》(英文版)Lecture 2 Last time: Given a set of events with are mutually.pdf
- 《随机预算与调节》(英文版)Lecture 5 Last time Characterizing groups of random variables.pdf
- 《随机预算与调节》(英文版)Lecture 3 Last time: Use of Bayes' rule to find the probability.pdf
- 《随机预算与调节》(英文版)Lecture 1 Pre-requisites.pdf
- 《航空器的稳定与控制》(英文版)Lecture 16 System Identification.pdf
- 《航空器的稳定与控制》(英文版)Distributed Coordination and Control.pdf
- 《航空器的稳定与控制》(英文版)Lecture 17 VALIDATION- DETAILS.pdf
- 《航空器的稳定与控制》(英文版)Lecture 12 Lateral Autopilots.pdf
- 《航空器的稳定与控制》(英文版)Lecture 14 Equations of Motion.pdf
- 《随机预算与调节》(英文版)Lecture 17 Last time: Ground rules for filtering and control system design.pdf
- 《随机预算与调节》(英文版)Lecture 14 Last time: w(t,)=w(t-r).pdf
- 《随机预算与调节》(英文版)Lecture 19 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 20 Last time: Completed solution to the optimum.pdf
- 《随机预算与调节》(英文版)Lecture 23 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 21 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 22 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 24 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 25 Last time:.pdf
- 《全球定位系统原理》(英文版)Lecture 1 Principles of the Global Positioning System.pdf
- 《全球定位系统原理》(英文版)Lecture 2 Coordinate Systems.pdf
- 《全球定位系统原理》(英文版)Lecture 3 Gravitational potential.pdf
- 《全球定位系统原理》(英文版)Lecture 4 Coordinate types.pdf
- 《全球定位系统原理》(英文版)Lecture 5 Satellite Orbits.pdf
- 《全球定位系统原理》(英文版)Lecture 6 GPS Observables.pdf
- 《全球定位系统原理》(英文版)Lecture 7 Today's Lecture.pdf
- 《全球定位系统原理》(英文版)Lecture 8 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 9 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 10 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 11 Prof Thomas Herring.pdf