《随机预算与调节》(英文版)Lecture 15 Last time: Compute the spectrum and integrate to get the mean squared value

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander Velde Lecture 15 ast time: Compute the spectrum and integrate to get the mean squared value F(SF(sS.(s)d Cauch-Residue Theorem 手F(s)d=2/∑ (residue at enclosed poles, lote that in the case of repeated roots of the denominator, a pole of multiple order contributes only a single residue To evaluate F(s)ds by integrating around a closed contour enclosing the entire left half plane, note that if F(s)>0 faster than- for large s, the integral along the curved part of the contour is zero. HF(s)~asl→,∮F(s)≤nR=kxR→0aR→n>1 pplicable to rational functions; no predictor or smoother. Must factor the spectrum of the input into the following form Refer to the handout Tabulated values of the Integral Form Roots of c(s) and d(s) in left half plane only. Should check the stability of the solution Page 1 of 2
16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 1 of 2 Lecture 15 Last time: Compute the spectrum and integrate to get the mean squared value 2 1 () ( ) () 2 j xx j y F s F s S s ds π j ∞ − ∞ = − ∫ Cauchy-Residue Theorem >∫ F s ds j ( ) 2 (residue at enclosed poles) = π ∑ Note that in the case of repeated roots of the denominator, a pole of multiple order contributes only a single residue. To evaluate ( ) j j F s ds ∞ − ∞ ∫ by integrating around a closed contour enclosing the entire left half plane, note that if F s() 0 → faster than 1 s for large s , the integral along the curved part of the contour is zero. If ( )~ n k F s s as s → ∞ , ( 1) semi-circle ( ) 0 as if 1 n n k F s ds R k R R n R π π − − ≤ = → →∞ > >∫ Integral tables Applicable to rational functions; no predictor or smoother. Must factor the spectrum of the input into the following form. 1 ()( ) 2 () ( ) j n j csc s I ds π j d sd s ∞ − ∞ − = − ∫ Refer to the handout “Tabulated Values of the Integral Form”. Roots of c s( ) and d s( ) in left half plane only. Should check the stability of the solution

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander Velde Application to the problem of System Identification (t) y(t) Record x(o)and y(o) and process that data y(o=w(,)x(t-r,dr,+w(r, )d(t-T)dr R(r)=E[x()+)]=x()y(+z) w,(t)x(y(+t-t, dt, +wa(r )x(d(+T-T,Xr, If x(o), d(t)are independent and at least x(t) is zero mean, then rd(r)=0 R(r)=w,()R(r-T)dr, If x(t) is wide band relative to the system, approximate it as white Rx()=S6(r) hite app tion 3()=」w:(x1)S列(x-1)dr Sw(T) Page 2 of 2
16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 2 of 2 Application to the problem of System Identification Record x( )t and y t( ) and process that data. [ ] 1 11 1 11 0 0 1 11 1 11 0 0 () ( ) ( ) ( ) ( ) ( ) () ( ) () ( ) ( ) () ( ) ( ) () ( ) x d xy x d yt w xt d w dt d R E xt yt xt yt w xt yt d w xtdt d τ ττ τ ττ τ ττ τ ττ τ τ ττ τ ∞ ∞ ∞ ∞ = −+ − = += + = +− + +− ∫ ∫ ∫ ∫ If x( ), ( ) t dt are independent and at least x( )t is zero mean, then () 0 Rxd τ = . 1 11 0 () ( ) ( ) Rxy x xx τ wR d τ ττ τ ∞ = − ∫ If x( )t is wide band relative to the system, approximate it as white. () () R S xx x τ = δ τ 1 11 0 () ( ) ( ) ( ) xy x x x x R wS d S w τ τ δτ τ τ τ ∞ = − = ∫
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《随机预算与调节》(英文版)Lecture 11 Last time: Ergodic processes.pdf
- 《随机预算与调节》(英文版)Lecture 13 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 9 Last time: Linearized error propagation.pdf
- 《随机预算与调节》(英文版)Lecture 10 Last time: Random Processes.pdf
- 《随机预算与调节》(英文版)Lecture 12 Non-zero power at zero frequency.pdf
- 《随机预算与调节》(英文版)Lecture 6 Example: Sumn of two independent random variables.pdf
- 《随机预算与调节》(英文版)Lecture 8 ast time: Multi-dimensional normal distribution.pdf
- 《随机预算与调节》(英文版)Lecture 7 Last time: Moments of the Poisson distribution from its generating function.pdf
- 《随机预算与调节》(英文版)Lecture 4 Last time: Left off with characteristic.pdf
- 《随机预算与调节》(英文版)Lecture 2 Last time: Given a set of events with are mutually.pdf
- 《随机预算与调节》(英文版)Lecture 5 Last time Characterizing groups of random variables.pdf
- 《随机预算与调节》(英文版)Lecture 3 Last time: Use of Bayes' rule to find the probability.pdf
- 《随机预算与调节》(英文版)Lecture 1 Pre-requisites.pdf
- 《航空器的稳定与控制》(英文版)Lecture 16 System Identification.pdf
- 《航空器的稳定与控制》(英文版)Distributed Coordination and Control.pdf
- 《航空器的稳定与控制》(英文版)Lecture 17 VALIDATION- DETAILS.pdf
- 《航空器的稳定与控制》(英文版)Lecture 12 Lateral Autopilots.pdf
- 《航空器的稳定与控制》(英文版)Lecture 14 Equations of Motion.pdf
- 《航空器的稳定与控制》(英文版)Lecture 15 INERTIAL SENSoRS.pdf
- 《航空器的稳定与控制》(英文版)Lecture 13 Altitude Controller.pdf
- 《随机预算与调节》(英文版)Lecture 16 Last time: Wide band input.pdf
- 《随机预算与调节》(英文版)Lecture 18 Last time: Semi-free configuration design.pdf
- 《随机预算与调节》(英文版)Lecture 17 Last time: Ground rules for filtering and control system design.pdf
- 《随机预算与调节》(英文版)Lecture 14 Last time: w(t,)=w(t-r).pdf
- 《随机预算与调节》(英文版)Lecture 19 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 20 Last time: Completed solution to the optimum.pdf
- 《随机预算与调节》(英文版)Lecture 23 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 21 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 22 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 24 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 25 Last time:.pdf
- 《全球定位系统原理》(英文版)Lecture 1 Principles of the Global Positioning System.pdf
- 《全球定位系统原理》(英文版)Lecture 2 Coordinate Systems.pdf
- 《全球定位系统原理》(英文版)Lecture 3 Gravitational potential.pdf
- 《全球定位系统原理》(英文版)Lecture 4 Coordinate types.pdf
- 《全球定位系统原理》(英文版)Lecture 5 Satellite Orbits.pdf
- 《全球定位系统原理》(英文版)Lecture 6 GPS Observables.pdf
- 《全球定位系统原理》(英文版)Lecture 7 Today's Lecture.pdf
- 《全球定位系统原理》(英文版)Lecture 8 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 9 Prof Thomas Herring.pdf