《全球定位系统原理》(英文版)Lecture 5 Satellite Orbits

12. 540 Principles of the Global Positioning System Lecture 05 Prof. Thomas Herring 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 1 12.540 Principles of the Global Positioning System Lecture 05 Prof. Thomas Herring

Satellite Orbits Treat the basic description and dynamics of satellite orbits Major perturbations on GPS satellite orbits Sources of orbit information SP3 format from the International gPs service Broadcast ephemeris message Accuracy of orbits and health of satellites Logistics: Who can attend lecture on Fridays at11-12:30? 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 2 Satellite Orbits • Treat the basic description and dynamics of satellite orbits • Major perturbations on GPS satellite orbits • Sources of orbit information: – SP3 format from the International GPS service – Broadcast ephemeris message • Accuracy of orbits and health of satellites • Logistics: Who can attend lecture on Fridays at 11-12:30?

Dynamics of satellite orbits Basic dynamics is described by f=Ma where the force, F, is composed of gravitational forces, radiation pressure(drag is negligible for GPS), and thruster firings(not directly modeled) Basic orbit behavior is given by 酩=GMr 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 3 Dynamics of satellite orbits • Basic dynamics is described by F=Ma where the force, F, is composed of gravitational forces, radiation pressure (drag is negligible for GPS), and thruster firings (not directly modeled). • Basic orbit behavior is given by Ý r Ý = −GM e r 3 r

Simple dynamics GMe=μ=3986006X106m3s2 The analytical solution to the central force model is a Keplerian orbit. For gps these are elliptical orbits Mean motion, n, in terms of period P is given by 2丌 For gPs semimajor axis a- 26400km 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 4 Simple dynamics • G M e = µ = 3986006x10 8 m 3 s-2 • The analytical solution to the central force model is a Keplerian orbit. For GPS these are elliptical orbits. • Mean motion, n, in terms of period P is given by • For GPS semimajor axis a ~ 26400km n = 2 π P = µ a 3

Solution for central force model This class of force model generates orbits that are conic sections. We will deal only with closed elliptical orbits The orbit plane stays fixed in space One of the foci of the ellipse is the center of mass of the body These orbits are described Keplerian elements 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 5 Solution for central force model • This class of force model generates orbits that are conic sections. We will deal only with closed elliptical orbits. • The orbit plane stays fixed in space • One of the foci of the ellipse is the center of mass of the body • These orbits are described Keplerian elements

Keplerain elements: Orbit plane Satellite perigee 00 Verna equator equinox Node Greenwich i Inclination Q2 Right Ascension of ascending node o Argument of perigee v True anomaly 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 6 Keplerain elements: Orbit plane Node i ω Ω ν Z θ 0 Greenwich Vernal equinox Satellite perigee equator i Inclination Ω Right Ascension of ascending node ω Argument of perigee ν True anomaly

Keplerain elements in plane Satellite Apogee a ae vEv Perigee Focus Center of Mass a semimajor axIs V True anomaly b semiminor axis E Eccentric anomaly e eccentricity M Mean anomaly 02/2002 12.540Lec05
02/20/02 12.540 Lec 05 7 Keplerain elements in plane a Focus Center of Mass ae Satellite Apogee Perigee b E ν r a semimajor axis b semiminor axis e eccentricity ν True anomaly E Eccentric anomaly M Mean anomaly

Satellite motion The motion of the satellite in its orbit is given by M(1)=n(t-70) E(t=M(t+esin e(t) vt)=tan e sin e(t/(1-ecose(t) (cos e(t-e/(1-ecose(t)) To is time of perigee 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 8 Satellite motion • The motion of the satellite in its orbit is given by • T o is time of perigee M ( t ) = n ( t − T0 ) E ( t ) = M ( t ) + esin E ( t ) ν( t ) = tan −1 1 − e 2 sin E ( t)/ ( 1 − ecos E ( t)) (cos E ( t ) − e)/ ( 1 − ecos E ( t)) ⎡ ⎣ ⎢ ⎤ ⎦ ⎥

True anomaly Difference between true anomaly and mean anomaly fore0.001-0.100 -005 -0.1 -0.15 -025 15 3.5 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 9 True anomaly 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 x 104 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 Difference between true anomaly and Mean anomaly for e 0.001-0.100

Eccentric anomaly Difference between eccentric anomaly and mean anomaly 0.15 fore0.001-0.100 0.1 -0.05 -0.15 -0.25 15 2.5 3.5 02/20/02 12.540Lec05
02/20/02 12.540 Lec 05 10 Eccentric anomaly 0 0.5 1 1.5 2 2.5 3 3.5 4 x 104 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 Difference between eccentric anomaly and Mean anomaly for e 0.001-0.100
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《全球定位系统原理》(英文版)Lecture 4 Coordinate types.pdf
- 《全球定位系统原理》(英文版)Lecture 3 Gravitational potential.pdf
- 《全球定位系统原理》(英文版)Lecture 2 Coordinate Systems.pdf
- 《全球定位系统原理》(英文版)Lecture 1 Principles of the Global Positioning System.pdf
- 《随机预算与调节》(英文版)Lecture 25 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 24 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 22 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 21 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 23 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 20 Last time: Completed solution to the optimum.pdf
- 《随机预算与调节》(英文版)Lecture 19 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 14 Last time: w(t,)=w(t-r).pdf
- 《随机预算与调节》(英文版)Lecture 17 Last time: Ground rules for filtering and control system design.pdf
- 《随机预算与调节》(英文版)Lecture 18 Last time: Semi-free configuration design.pdf
- 《随机预算与调节》(英文版)Lecture 16 Last time: Wide band input.pdf
- 《随机预算与调节》(英文版)Lecture 15 Last time: Compute the spectrum and integrate to get the mean squared value.pdf
- 《随机预算与调节》(英文版)Lecture 11 Last time: Ergodic processes.pdf
- 《随机预算与调节》(英文版)Lecture 13 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 9 Last time: Linearized error propagation.pdf
- 《随机预算与调节》(英文版)Lecture 10 Last time: Random Processes.pdf
- 《全球定位系统原理》(英文版)Lecture 6 GPS Observables.pdf
- 《全球定位系统原理》(英文版)Lecture 7 Today's Lecture.pdf
- 《全球定位系统原理》(英文版)Lecture 8 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 9 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 10 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 11 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 12 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 13 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 14 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 15 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 16 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 17 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 18 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 20 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 20 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 21 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 22 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 23 Prof Thomas Herring.pdf
- 美国麻省理工大学:《航空航天学讲义》教学资源(讲义,英文版)1 introemm.pdf
- 美国麻省理工大学:《航空航天学讲义》教学资源(讲义,英文版)2 Course Faculty.pdf