《全球定位系统原理》(英文版)Lecture 3 Gravitational potential

12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 1 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring

Review In last lecture we looked at conventional methods of measuring coordinates Triangulation, trilateration, and leveling Astronomic measurements using external bodies Gravity field enters in these determinations 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 2 Review • In last lecture we looked at conventional methods of measuring coordinates • Triangulation, trilateration, and leveling • Astronomic measurements using external bodies • Gravity field enters in these determinations

Gravitational potential In spherical coordinates: need to solve 1 6 1 OV (r)+ (sine)+-22 ra r- since r- sin 0 an This is laplace s equation in spherical coordinates 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 3 Gravitational potential • In spherical coordinates: need to solve • This is Laplace’s equation in spherical coordinates 1 r ∂ 2 ∂r 2 (rV ) + 1 r 2 sin θ ∂ ∂θ(sin θ ∂V ∂θ ) + 1 r 2 sin 2 θ ∂ 2 V ∂λ 2 = 0

Solution to gravity potential The homogeneous form of this equation is a"" partial differential equation In spherical coordinates solved by separation oT variables, r=radius 入= longitude andθ=co- latitude V(r,,)=R()g(6)h() 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 4 Solution to gravity potential • The homogeneous form of this equation is a “classic” partial differential equation. • In spherical coordinates solved by separation of variables, r=radius, λ=longitude and θ=co-latitude V( r , θ, λ) = R ( r ) g (θ) h ( λ)

Solution in spherical coordinates The radial dependence of form rn or r-n depending on whether inside or outside body. n is an integer Longitude dependence is sin(mn) and cos(mn)where m is an integer The colatitude dependence is more difficult to solve 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 5 Solution in spherical coordinates • The radial dependence of form r n or r-n depending on whether inside or outside body. N is an integer • Longitude dependence is sin(m λ) and cos(m λ) where m is an integer • The colatitude dependence is more difficult to solve

Colatitude dependence Solution for colatitude function generates Legendre polynomials and associated functions The polynomials occur when m=0 in n dependence. t=cos(0) Pn()= 2 nl dt 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 6 Colatitude dependence • Solution for colatitude function generates Legendre polynomials and associated functions. • The polynomials occur when m=0 in λ dependence. t=cos( θ ) Pn ( t ) = 1 2 n n! d n d t n ( t 2 −1) n

Legendre Functions Low order functions P()=t Arbitrary n P2()=(312-1) 2 values are P3()=(5t3-3) generated by recursive P24(t)=(35t-3012+3 algorithms 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 7 Legendre Functions • Low order functions. Arbitrary n values are generated by recursive algorithms Po ( t ) = 1 P1( t ) = t P2 ( t ) = 1 2 (3 t 2 −1) P3 ( t ) = 1 2 (5 t 3 − 3 t ) P4 ( t ) = 1 8 (3 5 t 4 − 30 t 2 +3)

Associated Legendre Functions The associated functions satisfy the following equation Pn(t)=(-1y(1-2)m2 d 2P() The formula for the polynomials Rodriques formula, can be substituted 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 8 Associated Legendre Functions • The associated functions satisfy the following equation • The formula for the polynomials, Rodriques’ formula, can be substituted Pnm ( t ) = ( −1) m (1 − t 2 ) m/2 d m d t m Pn ( t )

Associated functions P0(t)=1 Pnm(t): n is called P0()=t degree; m is order P1()=-(1-t2)2 m0 http://mathworld.wolframcom/legendrepoLynomial.html 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 9 Associated functions • Pnm(t): n is called degree; m is order • m0 P00 ( t ) = 1 P10 ( t ) = t P11 ( t ) = −(1 − t 2 )1/ 2 P20 ( t ) = 1 2 (3 t 2 −1) P21 ( t ) = − 3 t(1 − t 2 )1/ 2 P22 ( t ) = 3( 1 − t 2 ) http://mathworld.wolfram.com/LegendrePolynomial.html

Ortogonality conditions The Legendre polynomials and functions are orthogonal P()P(t)dt=2 2n+1 Pim(t)pm(t)dt 2(n+m)! 2n+1(n-m) nn 02/1302 12.540Lec03
02/13/02 12.540 Lec 03 10 Ortogonality conditions • The Legendre polynomials and functions are orthogonal: Pn' ( t ) −1 1 ∫ Pn ( t )dt = 2 2 n + 1 δ n'n Pn'm ( t ) −1 1 ∫ Pnm ( t )dt = 2 2 n + 1 ( n + m)! ( n − m)! δ n'n
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《全球定位系统原理》(英文版)Lecture 2 Coordinate Systems.pdf
- 《全球定位系统原理》(英文版)Lecture 1 Principles of the Global Positioning System.pdf
- 《随机预算与调节》(英文版)Lecture 25 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 24 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 22 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 21 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 23 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 20 Last time: Completed solution to the optimum.pdf
- 《随机预算与调节》(英文版)Lecture 19 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 14 Last time: w(t,)=w(t-r).pdf
- 《随机预算与调节》(英文版)Lecture 17 Last time: Ground rules for filtering and control system design.pdf
- 《随机预算与调节》(英文版)Lecture 18 Last time: Semi-free configuration design.pdf
- 《随机预算与调节》(英文版)Lecture 16 Last time: Wide band input.pdf
- 《随机预算与调节》(英文版)Lecture 15 Last time: Compute the spectrum and integrate to get the mean squared value.pdf
- 《随机预算与调节》(英文版)Lecture 11 Last time: Ergodic processes.pdf
- 《随机预算与调节》(英文版)Lecture 13 Last time:.pdf
- 《随机预算与调节》(英文版)Lecture 9 Last time: Linearized error propagation.pdf
- 《随机预算与调节》(英文版)Lecture 10 Last time: Random Processes.pdf
- 《随机预算与调节》(英文版)Lecture 12 Non-zero power at zero frequency.pdf
- 《随机预算与调节》(英文版)Lecture 6 Example: Sumn of two independent random variables.pdf
- 《全球定位系统原理》(英文版)Lecture 4 Coordinate types.pdf
- 《全球定位系统原理》(英文版)Lecture 5 Satellite Orbits.pdf
- 《全球定位系统原理》(英文版)Lecture 6 GPS Observables.pdf
- 《全球定位系统原理》(英文版)Lecture 7 Today's Lecture.pdf
- 《全球定位系统原理》(英文版)Lecture 8 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 9 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 10 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 11 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 12 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 13 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 14 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 15 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 16 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 17 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 18 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 20 Prof. Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 20 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 21 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 22 Prof Thomas Herring.pdf
- 《全球定位系统原理》(英文版)Lecture 23 Prof Thomas Herring.pdf