中国高校课件下载中心 》 教学资源 》 大学文库

《随机预算与调节》(英文版)Lecture 23 Last time:

文档信息
资源类别:文库
文档格式:PDF
文档页数:3
文件大小:146.58KB
团购合买:点击进入团购
内容简介
The two middle terms are zero: fort>lo,n(t) and are uncorrelated becauset) is white(impulse correlation function) For=, n() has a finite effect on x()because n() is white. But the integral of a finite quantity over one point is zero.
刷新页面文档预览

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander velde Lecture 23 ast time d(t,r)=A(1)(t,r d(r,z)=1 So the covariance matrix for the state at time t is x(1)=x(1)-x(1)x(t)-x(r) =x(1)x(1) =Ea(4)x4)+j()B(7厘(xM1y(24)+J(yB()()dt =Φ(14)x0)x()d(t,) +∫a()x(6)(z)B(z)(z)d2 +∫a(.x)B()x)7a(4)dr +∫d可Jdr(t.x)B(x)(工(可)B(2)(x)y The two middle terms are zero For t>to, n(r) and x(to) are uncorrelated because n(r) is white(impulse correlation function For T=to, n(t) has a finite effect on x(to) because n(r) is white. But the integral of a finite quantity over one point is zero X()=(4)X()(5)+ dr dt2(x)B()N()5(z2-z)B(z2yo(x2 =(4)X((4)+」o(t:)B)N()(ry(r)yar This is an integral expression for the state covariance matrix. But we would prefer to have a differential equation. So take the derivative with respect to time Page 1 of 3

16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 1 of 3 Lecture 23 Last time: (, ) () (, ) (,) d t At t dt I τ τ τ τ Φ =Φ Φ = So the covariance matrix for the state at time t is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 1 1 11 0 2 2 2 2 0 0 002 2 2 2 () () () () () () () , ( ) , ( ) ( ) () , ( ) ( ) , , () () , , ()( ) ( ) , T T t t T TT T T t t T T t T T T t Xt xt xt xt xt xtxt E tt xt t B n d xt tt n B t d tt xtxt tt tt xt n B t d t τ τ ττ τ τ τ τ τ τ ττ =− − ⎡ ⎤⎡ ⎤ ⎣ ⎦⎣ ⎦ = ⎡ ⎤⎡ ⎤ = Φ +Φ Φ + Φ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ =Φ Φ +Φ Φ + Φ ∫ ∫ ∫ % % % %% % % % % % ( ) ( ) ( ) 0 0 0 1 1 10 0 1 12 1 11 2 2 2 , ( )( )() , , ( ) ( ) ( ) ( ) (, ) t T T t t t TT T t t B n xt tt d dd t Bn n B t τ ττ τ ττ τ τττ τ τ Φ +Φ Φ ∫ ∫ ∫ % % % % The two middle terms are zero: - For 0 τ > t , n%( ) τ and 0 x%( ) t are uncorrelated because n%( ) τ is white (impulse correlation function) - For 0 τ = t , n%( ) τ has a finite effect on 0 x%( ) t because n%( ) τ is white. But the integral of a finite quantity over one point is zero. () () ( ) ( ) ( ) ( ) () 0 0 0 0 0 0 1 2 1 1 1 21 2 2 00 0 () , ( ) , , ( ) ( ) ( ) (, ) , ( ) , , ( ) ( ) ( ) (, ) t t T T T t t t T T T t Xt tt Xt tt d d t B N B t tt Xt tt t B N B t d τ τ τ τ τ δτ τ τ τ τ τ ττ ττ =Φ Φ + Φ − Φ =Φ Φ + Φ Φ ∫ ∫ ∫ This is an integral expression for the state covariance matrix. But we would prefer to have a differential equation. So take the derivative with respect to time

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander velde x(1)=A(y(,40)X(4)Φ(t4) +(t,4)X()dp(40)4) +A((L, r)B()N(o)B(r)'(,t)dr +o(s, r)B(0)N(a)B(r)'d(i, r)"A(dr +B(1)N(t)B() A x(=A(0)X(o+X(O)A(0+B(ON(OB( This defines the first and second order statistics of the state Initial conditions Often we wish to compute the time evolution of the statistics of a system which starts from rest at time zero. If the input to this real system is being formed by a shaping filter, then not all elements of X are zero at t=0 We want to model x(t) as a stationary process This situation is equivalent to aping u(t) stem Filter where the white noise input has been applied for all past time. Thus at time zero All elements of X(o,o) which are variances or covariances involving the states of the system are zero All elements of X(0, O)which are variances or covariances involving onl states of the shaping filter are at their steady state values for the shaping filter alone driven by the white noise Page 2 of 3

16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 2 of 3 () () () () () () () () 0 0 00 0 00 0 () () , ( ) , , ( ) , () () , ( ) ( ) ( ) , , ( ) ( ) ( ) , () () () () () () () () () () () () T T T t T T t t T T T t T T T d X t At tt X t tt dt tt X t tt At At t B N B t d t B N B t At d BtNtBt d X t At X t X t At Bt N t Bt dt τ τ ττ τ τ τ τ ττ τ τ =Φ Φ +Φ Φ +Φ Φ +Φ Φ + =+ + ∫ ∫ This defines the first and second order statistics of the state. Initial conditions Often we wish to compute the time evolution of the statistics of a system which starts from rest at time zero. If the input to this real system is being formed by a shaping filter, then not all elements of X are zero at t = 0. We want to model x( )t as a stationary process. This situation is equivalent to: where the white noise input has been applied for all past time. Thus at time zero: - All elements of X (0,0) which are variances or covariances involving the states of the system are zero. - All elements of X (0,0) which are variances or covariances involving only states of the shaping filter are at their steady state values for the shaping filter alone driven by the white noise

16.322 Stochastic Estimation and Control, Fall 2004 Prof vander Velde X System states only System and filter states System and filter states Filter states only X(0,0) 0X,,(∞) The System states v Shaping filter states With this initialization X.(t) will remain constant- which it should do if we think of x(t) as a member of a stationary process

16.322 Stochastic Estimation and Control, Fall 2004 Prof. Vander Velde Page 3 of 3 , System states only System and filter states System and filter states Filter states only 0 0 (0,0) 0 ( ) T T s s s T T s v v X x x x v vx vv X X ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ ∞ where System states Shaping filter states s x x v ⎡ ⎤ ⎡ ⎤ = = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ With this initialization, , ( ) Xv v t will remain constant – which it should do if we think of x( )t as a member of a stationary process

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档