电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 08 Image Compression

电子科枝女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC Chapter08 mage Compression Ping Zhang
Ping Zhang

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC Outline ◆ Background ◆Fundamentals Some Basic Compression Methods Digital Image Watermarking' 河
Outline Background Fundamentals Some Basic Compression Methods Digital Image Watermarking* Background Fundamentals Some Basic Compression Methods Digital Image Watermarking*

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC Outline ◆ Background ◆Fundamentals Some Basic Compression Methods Digital Image Watermarking' 河
Outline Background Fundamentals Some Basic Compression Methods Digital Image Watermarking* Background Fundamentals Some Basic Compression Methods Digital Image Watermarking*

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 8,1 Fundamentals Agenda g Coding Redundancy g Spatial and Temporal Redundancy Irrelevant Information g Measuring Image Information Fidelity Criteria Image Compression Models Image Formats,Containers,and Compression Standards Agenda
Coding Redundancy Spatial and Temporal Redundancy Irrelevant Information Measuring Image Information Fidelity Criteria Image Compression Models Image Formats, Containers, and Compression Standards Agenda 8.1 Fundamentals

电子科枝女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 8,1 Fundamentals ● The term data compression refers to the process of reducing the amount of data required to represent a given quantity of information ·Data≠Information Various amount of data can be used to represent the same information Data might contain elements that provide no relevant information data redundancy
8.1 Fundamentals • The term data compression refers to the process of reducing the amount of data required to represent a given quantity of information • Data Information • Various amount of data can be used to represent the same information • Data might contain elements that provide no relevant information : data redundancy

电子科技女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 8,1 Fundamentals ■ Let b and b'denote the number of information carrying units in two data sets that represent the same information The relative redundancy R is define as: R=1-1/C where C,commonly called the compression ratio,is C=b/b
Let b and b’ denote the number of information carrying units in two data sets that represent the same information The relative redundancy R is define as : where C, commonly called the compression ratio, is R 1 1/ C 8.1 Fundamentals ' C bb /

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 8,1 Fundamentals ■Ifb=b'C=1andR=0 no redundancy ■Ifb>b'C→and R→1 high redundancy ■Ifb undesirable In Image compression,3 basic redundancy can be identified 。Coding redundancy Spatial and Temporal Redundancy Irrelevant Information
If b = b’ , C = 1 and R = 0 no redundancy If b >> b’ , C and R high redundancy If b << b’ , C and R undesirable In Image compression , 3 basic redundancy can be identified Coding Redundancy Spatial and Temporal Redundancy Irrelevant Information 1 0 8.1 Fundamentals

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 8,1 Fundamentals ab c FIGURE 8.1 Computer generated 256 X 256 X 8 bit images with(a)coding redundancy,(b)spatial redundancy, and (c)irrelevant information.(Each was designed to demonstrate one principal redundancy but may exhibit others as well.) Coding Redundancy Spatial and Temporal Redundancy Irrelevant Information
Coding Redundancy Spatial and Temporal Redundancy Irrelevant Information 8.1 Fundamentals

电子科技女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 1.Coding Redundancy Recall from the histogram calculations 卫() k=0,1,2,L-1 MN p,(r)is the probability of a pixel in M XN image to have a certain value rk; nk is the number of times that the kth intensity appears in the image; L is the number of intensity value. If the number of bits used to represent r is I(r),then L = ∑1)p,) k=0
Recall from the histogram calculations pr(rk) is the probability of a pixel in M X N image to have a certain value rk ; nk is the number of times that the kth intensity appears in the image; L is the number of intensity value. If the number of bits used to represent rk is l(rk), then ( ) 0,1, 2..., 1 k r k n pr k L MN 1. Coding Redundancy 1 0 () () L avg k r k k L lr p r

电子科技女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC Examaple8.1 A simple illustration of variable-length coding Tk p() Code 1 1i(rk) Code 2 12(k) r87=87 0.25 01010111 8 01 2 128=128 0.47 10000000 8 1 1 186=186 0.25 11000100 8 000 3 255=255 0.03 11111111 8 001 3 rk for k≠87,128,186,255 0 8 0 4 256×256×8 1)P) C= ≈4.42 k=0 256×256×1.81 =2(0.25)+1(0.47)+3(0.25)+3(0.03) =1.81bit R=11 =0.774 4.42
4 0 () () 2(0.25) 1(0.47) 3(0.25) 3(0.03) 1.81 bit avg k r k k L lr P r 1 1 0.774 4.42 R Examaple8.1 A simple illustration of variable-length coding 256 256 8 4.42 256 256 1.81 C
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 07 Wavelets and Multiresolution Processing.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 06 Color Image Processing.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 05 Image Restoration and Reconstruction.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 04 Filtering in the Frequency Domain.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 03 Intensity Transformations and Spatial Filtering.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 02 数字图像处理基础 Fundamentatals of Digital Image.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 01 Introduction of Digital Image Processing(张萍).pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第四部分 CH03 两通道滤波器组.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第四部分 CH02 滤波器组基础.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第四部分 CH01 现代信号处理——信号的抽取和插值.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第三部分 CH04 Cohen类时频分布.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第三部分 CH03 Wigner分布.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第三部分 CH02 短时傅里叶变换与Gabor变换.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第二部分 CH04 自适应滤波.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第二部分 CH03 参数模型功率谱估计.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第三部分 CH01 时频分析——信号分析基础.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第二部分 CH02 非参数功率谱估计(主讲:张朋).pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第二部分 CH01 随机信号的相关和功率谱分析.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第一部分 CH06 FIR滤波器设计.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第一部分 CH05 IIR滤波器设计.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 09 Morphological Image Processing.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 10 Image Segmentation.pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(教学大纲,陈勇).pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第一章 超大规模集成导论(陈勇).pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第二章 缩小到纳米尺寸的CMOS器件面临的挑战.pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第三章 VLSI集成物理(1/2).pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第三章 VLSI集成物理(2/2).pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第四章 纳米CMOS器件中的栅工程.pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第五章 纳米CMOS器件的沟道工程和超浅结技术.pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第六章 新型纳米CMOS器件.pdf
- 电子科技大学:《信号处理矩阵分析 Matrix Analysis for Signal Processing》课程教学资源(课件讲稿)特殊矩阵 Special Matrices.pdf
- 电子科技大学:《柔性MEMS系统与集成 Flexible MEMS Technology and Integration》课程教学资源(教学大纲).pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第1讲 电路元件(陈会).pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第2讲 电路元件及转换.pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第3讲 图论.pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第4讲 图论与电路方程.pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第5讲 网络函数(不定导纳函数).pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第6讲 网络函数拓扑法.pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第7讲 网络分析的状态变量法(状态方程).pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第8讲 网络分析的状态变量法(状态方程求解).pdf