电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 04 Filtering in the Frequency Domain

电子科线女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC chapterd4fiteingintheFftegμegylonatin

电子科线女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC Outline Background Preliminary Concepts Sampling and the Fourier Transform of Sampled Functions The Discrete Fourier Transform of One Variable Extension to Functions of Two Variables Some Properties of the 2-D Discrete Fourier Transform The Basics of Filtering in the Frequency Domain Image Smoothing Using Frequency Domain Filters Image Sharpening Using Frequency Domain Filters Selective Filtering
Outline ◆ Background ◆ Preliminary Concepts ◆ Sampling and the Fourier Transform of Sampled Functions ◆ The Discrete Fourier Transform of One Variable ◆ Extension to Functions of Two Variables ◆ Some Properties of the 2-D Discrete Fourier Transform ◆ The Basics of Filtering in the Frequency Domain ◆ Image Smoothing Using Frequency Domain Filters ◆ Image Sharpening Using Frequency Domain Filters ◆ Selective Filtering

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 4.1 Background Agenda A Brief History of the Fourier Series and Transform
A Brief History of the Fourier Series and Transform 4.1 Background Agenda

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC A Brief History Jean Baptiste Joseph Fourier: French mathematician,born in 1768 in the town of Auxerre. ■ Fourier's contribution states that any periodic function can be expressed as the sum of sines and/or cosines of different frequencies,each multiplied by a different coefficient (we now Fourier(1768-1830) call this sum a Fourier series)
A Brief History ◼ Jean Baptiste Joseph Fourier: French mathematician, born in 1768 in the town of Auxerre. ◼ Fourier’s contribution states that any periodic function can be expressed as the sum of sines and/or cosines of different frequencies, each multiplied by a different coefficient (we now call this sum a Fourier series). Fourier(1768 –1830)

电子科线女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC A Brief History w n=0 × n=1 n=2 n=3 n=4 WWWM
= + + + + n=0 n=1 n=2 n=3 n=4 A Brief History

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC Outline Background Preliminary Concepts Sampling and the Fourier Transform of Sampled Functions The Discrete Fourier Transform of One Variable Extension to Functions of Two Variables Some Properties of the 2-D Discrete Fourier Transform The Basics of Filtering in the Frequency Domain ◆ Image Smoothing Using Frequency Domain Filters Image Sharpening Using Frequency Domain Filters Selective Filtering
Outline ◆ Background ◆ Preliminary Concepts ◆ Sampling and the Fourier Transform of Sampled Functions ◆ The Discrete Fourier Transform of One Variable ◆ Extension to Functions of Two Variables ◆ Some Properties of the 2-D Discrete Fourier Transform ◆ The Basics of Filtering in the Frequency Domain ◆ Image Smoothing Using Frequency Domain Filters ◆ Image Sharpening Using Frequency Domain Filters ◆ Selective Filtering

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 4.1 Preliminary Concepts Agenda Complex Numbers Fourier Series Impulses and Their Sifting Property The Fourier Transform of Functions of One Continuous variable Convolution
Complex Numbers Fourier Series Impulses and Their Sifting Property The Fourier Transform of Functions of One Continuous Variable Convolution 4.1 Preliminary Concepts Agenda

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 1.Complex numbers A complex number,C,is defined as C=R+i1,C'=R-il Representation of complex numbers in polar coordinates C=C(cos0+jsine) where C=VR2+12
* C R I C R I = + = − j , j ◆ A complex number, C, is defined as 1. Complex numbers ◆ Representation of complex numbers in polar coordinates C C j = + ( cos sin ) where 2 2 C R I = +

电子科线女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 1.Complex numbers Euler's formula Leonhard Euler(1707-1783) e=cos0+jsin Representation of complex numbers in polar coordinates C=Cle A pioneering Swiss mathematician and physicist.He made important discoveries in fields as diverse as infinitesimal calculus and graph theory.He also introduced much of the modern mathematical terminology and notation,particularly for mathematical analysis,such as the notion of a mathematical function.He is also renowned for his work in mechanics,fluid dynamics,optics,astronomy,and music theory
cos sin j e j = + ◆ Euler’s formula ◆ Representation of complex numbers in polar coordinates Leonhard Euler(1707-1783) j C C e = 1. Complex numbers A pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function. He is also renowned for his work in mechanics, fluid dynamics, optics, astronomy, and music theory

电子科发女学光电科学与工程学院 SCHOOL OF OPTOELECTRONIC SCIENCE AND ENGINEERING OF UESTC 2.Fourier Series ◆Fourier series Fourier Series can be expressed as the sum of sines and cosines multiplied by appropriate coefficients. 2πn f0=∑ce n=-00 where c,7打f0y守an-nL2 2πn
( ) 2 n j t T n n f t c e =− = Fourier Series can be expressed as the sum of sines and cosines multiplied by appropriate coefficients. 2. Fourier Series where ( ) 2 2 2 1 , 0, 1, 2,... n T j t T n T c f t e dt n T − = = ◆ Fourier Series
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 03 Intensity Transformations and Spatial Filtering.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 02 数字图像处理基础 Fundamentatals of Digital Image.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 01 Introduction of Digital Image Processing(张萍).pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第四部分 CH03 两通道滤波器组.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第四部分 CH02 滤波器组基础.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第四部分 CH01 现代信号处理——信号的抽取和插值.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第三部分 CH04 Cohen类时频分布.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第三部分 CH03 Wigner分布.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第三部分 CH02 短时傅里叶变换与Gabor变换.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第二部分 CH04 自适应滤波.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第二部分 CH03 参数模型功率谱估计.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第三部分 CH01 时频分析——信号分析基础.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第二部分 CH02 非参数功率谱估计(主讲:张朋).pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第二部分 CH01 随机信号的相关和功率谱分析.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第一部分 CH06 FIR滤波器设计.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第一部分 CH05 IIR滤波器设计.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第一部分 CH04 数字滤波器的基本结构.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第一部分 CH03 离散傅里叶变换与快速算法.pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第一部分 CH02 离散时间信号与系统分析基础(离散傅里叶变换及快速算法).pdf
- 电子科技大学:《信号处理理论与算法》课程教学资源(课件讲稿)第一部分 CH01 绪论(主讲:刘科).pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 05 Image Restoration and Reconstruction.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 06 Color Image Processing.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 07 Wavelets and Multiresolution Processing.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 08 Image Compression.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 09 Morphological Image Processing.pdf
- 电子科技大学:《图像处理及应用 Image Processing and Application》课程教学资源(课件讲稿)Chapter 10 Image Segmentation.pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(教学大纲,陈勇).pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第一章 超大规模集成导论(陈勇).pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第二章 缩小到纳米尺寸的CMOS器件面临的挑战.pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第三章 VLSI集成物理(1/2).pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第三章 VLSI集成物理(2/2).pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第四章 纳米CMOS器件中的栅工程.pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第五章 纳米CMOS器件的沟道工程和超浅结技术.pdf
- 电子科技大学:《集成电子学 Integrated Electronics》课程教学资源(课件讲稿)第六章 新型纳米CMOS器件.pdf
- 电子科技大学:《信号处理矩阵分析 Matrix Analysis for Signal Processing》课程教学资源(课件讲稿)特殊矩阵 Special Matrices.pdf
- 电子科技大学:《柔性MEMS系统与集成 Flexible MEMS Technology and Integration》课程教学资源(教学大纲).pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第1讲 电路元件(陈会).pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第2讲 电路元件及转换.pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第3讲 图论.pdf
- 电子科技大学:《现代网络理论与综合 Theory and Synthesize of Electric Network》研究生课程教学资源(课件讲稿)第4讲 图论与电路方程.pdf