中国高校课件下载中心 》 教学资源 》 大学文库

《数学物理方法》课程教学资源(PPT课件)Integral Transformation

文档信息
资源类别:文库
文档格式:PPT
文档页数:9
文件大小:87.5KB
团购合买:点击进入团购
内容简介
Integral Transformation General concept of the integraltransformation Fundamental ideas of The method ofIntegral Transformation Fourier Transforms of wave problems Fourier Transforms of heat problems Fourier Transforms of steadyproblems Conclusion of this charter
刷新页面文档预览

Methods of Mathematical Physics Integral transformation

Methods of Mathematical Physics Integral Transformation

Integral Transformation a General concept of the integra transformation Fundamental ideas of the method of Integral transformation Fourier Transforms of wave problems a Fourier Transforms of heat problems Fourier Transforms of steady problems Conclusion of this charter

Integral Transformation ◼ General concept of the integral transformation ◼ Fundamental ideas of The method of Integral Transformation ◼ Fourier Transforms of wave problems ◼ Fourier Transforms of heat problems ◼ Fourier Transforms of steady problems ◼ Conclusion of this charter

General Concepts a Integral transformation Definition turn the oragl function into one respect to new coefficients e General form f(x)→F(k)=∫f(×)K(xk)dx General properties linearity:af()+βg(X)→αF(k)+βG(k) ● Inverse transformation:f(×)←→F(k) derivative f(x)→f(×)K(Xk)| bound-∫f(×)Kx(x,k)dx

General Concepts ◼ Integral transformation ◼ Definition : • Turn the oragl function into one respect to new coefficients • General form • f(x) → F(k) = ∫f(x) K(x,k) dx ◼ General properties: • linearity: f(x) +  g(x) →  F(k) +  G(k) • Inverse transformation:f(x) ←→ F(k) • derivative: f’(x) → f(x) K(x,k)|bound - ∫f(x) Kx(x,k) dx

General Concepts Typical integral transformations F(k)= f(r) dx ■ Fourier 丌 Transfor mation f(x)= F(k)e dk a Laplace F(p)=Lf(x)e-p*dx Transfor O+10 mation f(x) 2ai do-ioo F(p)ep dp

General Concepts ◼ Typical integral transformations: ◼ Fourier Transfor mation f x F k e dk F k f x e dx ikx ikx    −  − − = = ( ) ( ) ( ) 2 1 ( )  ◼ Laplace Transfor mation   +  −  −  = = i i p x p x F p e dp i f x F p f x e dx    ( ) 2 1 ( ) ( ) ( ) 0

Fundamental idea ■ Programmer: Turn the original equation into an ordinary differential equation Solve the ordinary differential equation a Charge the solution of the ordinary differential equation into the solution of the original a Applying range: Fourier Transformation Unbounded region aplace transformation ·Semi- unbounded region

Fundamental Idea ◼ Programmer: ◼ Turn the original equation into an ordinary differential equation. ◼ Solve the ordinary differential equation. ◼ Charge the solution of the ordinary differential equation into the solution of the original. ◼ Applying range: ◼ Fourier Transformation : • Unbounded region ◼ Laplace Transformation : • Semi- unbounded region

Fourier transform for the wave problem Solving the wave problems l(x,t)→>U(k,t) a2u=0 q(x)→>Φ(k) U +aku=0 y(x)→>Y(k) u 1=09( l12=0=/(x) U=Φ coskat expat y(s)ds +psin kat 2a Jx-at

Fourier Transform for the wave problem      =  =  + = = = 0 0 2 2 | | 0 t t t tt U U U a k U  + − + = + + − x at x at s ds a u x at x at ( ) 2 1 [ ( ) ( )] 2 1    Solving the wave problems      = = − = = = | ( ) | ( ) 0 0 0 2 u x u x u a u t t t tt xx   kat U kat ka sin cos + 1  =  ( ) ( ) ( ) ( ) ( , ) ( , ) x k x k u x t U k t →  →  →    u = U k t e dk ikx ( , )

Fourier transform for the heat problems Solving the heat problems l(x,)→>U/(k,t) 4-aZ=0 q(x)→>d(k) U+aku=0 Ulo=Φ 1=0 u=U(k, t)e dk u=vs)ds expl 4at U=dexp(-k'a't

Fourier Transform for the heat problems     =  + = =0 2 2 | 0 t t U U a k U a t u s ds a t x s   2 exp[ ] ( ) 2 2 4 ( − ) − =  Solving the heat problems     = − = = | ( ) 0 0 2 u x u a u t t xx  exp( ) 2 2 U =  −k a t ( ) ( ) ( , ) ( , ) x k u x t U k t →  →   u = U k t e dk ikx ( , )

Fourier transform for the steady problems Solving the steady problems urr+uw=0, y>0 l(x,y)→U(k,y) k2U=0 0(x)→>d(k) l=0=0(x) U y=0 y→> u=U(k, y)e dk ds l=0(s) Jy U=exp(k y Tx-s)+y

Fourier Transform for the steady problems        = =  − = → = | 0 | 0 0 2 y y yy U U U k U [( ) ] ( ) 2 2 x s y yds u s − + =    Solving the steady problems      = = + =  → = | 0 | ( ) 0, 0 0 y y xx yy u u x u u y  U = exp(− | k | y) ( ) ( ) ( , ) ( , ) x k u x y U k y →  →   u = U k y e dk ikx ( , )

Conclusion for this charter a In principle, Fourier Transform can be applied to any unbounded problems The steady problem a The heat problem a The wave problem a The key to solving the Eg. by use of Fourier transform method is inverse transfrom a generally the results from Fourier Transform method are integral formulas

Conclusion for this charter ◼ In principle, Fourier Transform can be applied to any unbounded problems ◼ The steady problem ◼ The heat problem ◼ The wave problem ◼ The key to solving the Eq. by use of Fourier Transform method is inverse transfrom ◼ Generally, the results from Fourier Transform method are integral formulas

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档