《经济数据分析 Analysis of Economic Data》课程教学资源(PPT课件讲稿,英文版)Lesson 11 Regressions Part II

Lesson 11 Regressions Part II Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson 11-1
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-1 Lesson 11: Regressions Part II

Does watching television rot your mind? Zavodny, Madeline(2006): Does watching television rot your mind? Estimates of the effect on test scores economias of education Review25(5):565-573 a Television is one of the most omnipresent features of Americans lives. The average american adult watches about 15 h of television per week, accounting for almost one -half of free time a The substantial amount of time that most individuals spend watching television makes it important to examine its effects on society including human capital accumulation and academic achievement Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson 11-2
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-2 Does watching television rot your mind? ◼ Zavodny, Madeline (2006): “Does watching television rot your mind? Estimates of the effect on test scores,” Economics of Education Review, 25 (5): 565–573 ◼ Television is one of the most omnipresent features of Americans’ lives. The average American adult watches about 15 h of television per week, accounting for almost one-half of free time. ◼ The substantial amount of time that most individuals spend watching television makes it important to examine its effects on society, including human capital accumulation and academic achievement

Data regression model a This analysis uses three data sets to examine the relationship between television viewing and test scores: the national Longitudinal Survey of Youth 1979(NLSY the hsb survey and the NELS. Each survey includes test scores and a question about the number of hours of television watched by young adults Test Scorer a +hOurs of Tv +INdividual characteristics + Family Background in t dOther Uses of Timeit+t it Gil Test score of individual i at time t Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson 11-3
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-3 Data & Regression model ◼ This analysis uses three data sets to examine the relationship between television viewing and test scores: the National Longitudinal Survey of Youth 1979 (NLSY), the HSB survey and the NELS. Each survey includes test scores and a question about the number of hours of television watched by young adults. Test score of individual i at time t

Summary of samples from data sets HSB NElS Number of individuals 2477 14.988 6255 Type of data Cross-section Panel Panel Time period 1980,1982 1988,1990,1992 Age of respondents 16-19 13-22 12-20 Sibling structure 239 sibling pairs 432 twin pairs None Test score AFQT Vocabulary, reading, math Reading, math TV variable Hours per week Hours per weekday Hours per weekday, weekend y Categorical or linear L Categorical (7) Categorical (6 or 7) Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson 11-4
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-4 Summary of samples from data sets

Regression results <0<0.05<01 Test Scorei a+hOurs of TV +iNdividual Characteristics +2, Family Backgroundit dOther Uses of Timeit +tIt+ cir All Male F emale NLSY: AFOTscore (A)TⅤonl .007* 012 (.001) (.002) (.002) (B)A+individual 007 007 008* characteristics (.001) (.002 (.002 (C)B+family background . 003*3. .002 .005* (.001) (.002) (.001) (D)C+other uses of time -.003 -.002 (.001) (.002) 002 Number of observations 2477 1309 1168 Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson 11-5
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-5 Regression results **p<0.01; *p<0.05; †p<0.1

Multiple Linear Regression Model a Relationship Between Variables Is a Linear Function Random yintercept Slope Error Y=β0+β11+阝2×2+β3X3+…+阝Ⅹ+E Dependent Independent (Response) Explanatory Variable Variable Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson 11-6
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-6 Multiple Linear Regression Model ◼ Relationship Between Variables Is a Linear Function Y intercept Slope Random Error Dependent (Response) Variable Independent (Explanatory) Variable Y = b0 + b1X1 + b2X2 + b3X3 + … + bkXk + e

Finance Application: multifactor pricing model a It is assumed that rate of return on a stock(r) is linearly related to the rate of return on some factor and the rate of return on the overall market(rm) t=βo+βoiRt+阝Rmt+8 Rate of return on some major stock index Rate of return on a particular oil company stock i at The rate of return on time t crude oil price on date t Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson 11-7
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-7 Finance Application: multifactor pricing model ◼ It is assumed that rate of return on a stock (R) is linearly related to the rate of return on some factor and the rate of return on the overall market (Rm). Rate of return on a particular oil company stock i at time t Rate of return on some major stock index The rate of return on crude oil price on date t Rit = b0 + boi Rot+ b1Rmt +e

Estimation by Method of moments Number of moment condition needed Y=βo+βX1+β22+β33+…+阝×k+E k+1 parameters to estimate. Need k+1 moment conditions ■ Assumption#1 ■E(6)=0 implies e(y)-βo-β1E(X)-β2E(X2)-….kE(xX)=0 ■ Assumption#2 (eX)=0 implies E[(y-βo-β11-…-β×1]=0 Since Cova, X, =E(Ex1)-EsE(X,= E(ex,), the assumption really imply s and x are uncorrelated a Assumption #3: E(EX2)=0 Assumption #4: E(Ex3)=0 Assumption #k+1: E(ex)=0 Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson 11-8
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-8 Estimation by Method of moments Number of moment condition needed Y = b0 + b1X1 + b2X2 + b3X3 + … + bkXk + e k+1 parameters to estimate. Need k+1 moment conditions. ◼ Assumption #1 ◼ E(e) = 0 implies E(y) – b0 – b1 E(x1 ) – b2 E(x2 ) - … bk E(xk )= 0 ◼ Assumption #2 ◼ E(ex1 ) =0 implies E[(y – b0 – b1x1 - … - bkxk )x1 ]=0 ◼ Since Cov(e, x1 ) = E(ex1 ) – E(e)E(x1 ) = E(ex1 ), the assumption really imply e and x are uncorrelated. ◼ Assumption #3: E(ex2 ) =0 ◼ Assumption #4: E(ex3 ) =0 ◼ … ◼ Assumption #k+1: E(exk ) =0

Estimation ofβo阝1rβ2r…Pk Method of moments Two approaches 1. Solve theβo阝1,β2x…阝 k from the k+1 moment conditions,in terms of covariances, variances and means. Plug in to sample analog of these covariances, variances and means ro produce the sample estimate bo, bl, bye. b k 2. Assume bor b1, b2 k, solve them from the sample analog of the k+ 1 moment conditions Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson11-9
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-9 Estimation of b0 , b1 , b2 ,…, bk Method of moments ◼ Two approaches: 1. Solve the b0 , b1 , b2 ,…, bk from the k+1 moment conditions, in terms of covariances, variances and means. Plug in to sample analog of these covariances, variances and means ro produce the sample estimate b0 , b1 , b2 ,…, bk 2. Assume b0 , b1 , b2 ,…, bk , solve them from the sample analog of the k+1 moment conditions

Estimation ofβoβ1β2r…βk Maximum likelihood a Assume G to be independent identically distributed with normal distribution of zero mean and variance o2, denote the normal density for e be f)=f(yβo-βX1阝2x2…x) normal density a Choose bor b1, b2,., bk to maximize the joint likelihood L(bo,b1,b2…,b)=f(e1)*fe2)*,*f(e f(e)=f(y-bo-b1X1-b2X2-.-bk Xx) Ka-fu Wong C2007 ECON1003: Analysis of Economic Data Lesson11-10
Ka-fu Wong © 2007 ECON1003: Analysis of Economic Data Lesson11-10 Estimation of b0 , b1 , b2 ,…, bk Maximum Likelihood ◼ Assume ei to be independent identically distributed with normal distribution of zero mean and variance s2 . Denote the normal density for e be ◼ f(e)=f(y-b0 -b1x1 -b2x2 -…-bkxk ) f(e)= f(y-b0 -b1x1 -b2x2 -…-bkxk ) normal density ◼ Choose b0 , b1 , b2 , …, bk to maximize the joint likelihood: ◼ L(b0 , b1 , b2 , …, bk ) = f(e1 )*f(e2 )*…*f(en )
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《再保险》课程教学资源(PPT课件讲稿)第一章 再保险概论.ppt
- 电子科技大学:《经济学原理 Principles of Economics》课程教学资源(PPT课件讲稿)Session 8.ppt
- 武汉经济技术开发区税务局:个人所得税新政主要内容讲解.pptx
- 《审计学 Auditing》课程教学资源(PPT课件讲稿,共十六章,大纲版).ppt
- 《宏观经济学》课程教学资源(PPT课件讲稿)第三章 经济增长.ppt
- 发展社会主义市场经济(PPT课件讲稿).ppt
- 中国人民大学:《微观经济理论 Microeconomic Theory》课程教学资源(PPT课件讲稿)第4讲 消费者选择理论(效用最大化和选择).ppt
- 华北水利水电大学:《会计学》课程教学资源(PPT课件讲稿)第9章 统计指数.pptx
- 上海杉达学院:《中级财务会计》课程教学资源(PPT课件讲稿)第十一章 银行借款及应付债券.ppt
- 《环境经济学》课程教学资源(PPT课件讲稿)第3讲 效率与市场.ppt
- 浙江大学:欧洲债务危机原因、解决方法及对中国的影响.ppt
- 《经济学基础》课程教学资源(PPT课件讲稿)供求关系 Supply and Demand - In Introduction.ppt
- 包河区税务局:个人所得税六项专项附加扣除政策培训(PPT讲稿).ppt
- 《会计学基础》课程教学资源(PPT课件讲稿)第七章 会计账簿.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿)第三章 经典单方程计量经济学模型(多元线性回归模型).ppt
- 云南大学发展研究院:自主创新与建设创新型国家(PPT报告讲稿).ppt
- 《国际贸易实务》课程教学资源(PPT课件讲稿)第四章 国际货物运输.ppt
- 《新编税务会计》课程教学资源(PPT课件讲稿,共九章).ppt
- 《中级财务会计》课程教学资源(PPT课件讲稿)第三章 货币资金和应收账款.ppt
- 《国际贸易理论与实务》课程PPT教学课件(Theory of International Trade in Services)Chapter seven.ppt
- 对外经济贸易大学:《投资银行学》课程教学资源(PPT课件讲稿)第六章 私募股权投资上市并购与红筹股及其红筹模式(郭敏).ppt
- 《会计学》课程教学资源(PPT课件讲稿)第十四章 财务报告.ppt
- 武汉大学:SPSS使用方法(PPT讲稿,吴志强).ppt
- 上海杉达学院:《宏观经济学》课程教学资源(PPT课件讲稿)第4章 供给与需求的市场力量.ppt
- 山东大学:《产业经济学》课程教学资源(PPT课件讲稿)第十六章 外部性与市场失效.ppt
- 丽水职业技术学院:《会计电算化》课程教学资源(PPT课件讲稿)固定资产管理系统初始设置.ppt
- 《国际金融》课程教学资源(PPT电子教案课件讲稿,共八章).ppt
- 山东工商学院:《审计学》课程教学资源(PPT课件讲稿)第八章 审计测试中的抽样技术.ppt
- 对外经济贸易大学:《财产与责任保险》课程教学资源(PPT课件讲稿)第五章 再保险.ppt
- 大连理工大学出版社:《新编基础会计》课程PPT教学课件(第六版)会计账簿登记技术、财产清查技术.ppt
- 《国际贸易概论及实务》课程教学资源(PPT课件讲稿)备课笔记(共十二章,孙艳平).ppt
- 《国际贸易》课程教学资源(PPT课件讲稿)第一章 导论.ppt
- 中央国家机关政府采购中心:政府集中采购基本政策与实施(PPT讲稿).pptx
- 《国际贸易实务》课程教学资源(PPT课件讲稿)第五章 国际货款的收付.ppt
- 廊坊职业技术学院2016年度部门决算公开.pdf
- 清华大学出版社:《税收筹划》课程教学资源(PPT课件讲稿,共十一章,主编:李淑娟).ppt
- 海南大学经济管理学院:《会计学》课程教学资源(PPT课件讲稿,共六章).ppt
- 《工程经济学》课程教学资源(PPT课件讲稿)第八章 资本成本.ppt
- 河套学院:统筹法(PPT讲稿)统筹法在管理工作中的应用讲座.ppt
- 哈尔滨商业大学:《技术经济学》课程教学大纲.pdf