麻省理工大学:《生态学基础》课程教学课件(双语版)Conservation Examples

Courtesy of Eli Meir. Used with permission Conservation Examples Population Viability Analysis Butterflies and restoration Indicator Species Good idea? Hotspots Endangered species Part of declaring a species endangered involves doing a population Viability Analysis(PVa) a population is not considered endangered if it has 95% chance of persisting for 100 years Once a species is declared endangered, it gets a "recovery plan . What will be done to help it .When is it considered "recovered
Conservation Examples Population Viability Analysis - Butterflies and Restoration Indicator Species - Good idea? Hotspots Endangered Species Part of declaring a species endangered involves doing a Population Viability Analysis (PVA) A population is not considered endangered if it has 95% chance of persisting for 100 years. Once a species is declared endangered, it gets a “recovery plan” •What will be done to help it •When is it considered “recovered” 1 Courtesy of Eli Meir. Used with permission

Fender's blue butterfl Pretty butterfly that lives in western Oregon Lays eggs on Kincaids Lupine Kincaid's lupine only grows in" old growth"prairies Prairies are prime land for arms. subu urbs, shopping malls, Both Kincaids Lupine and Fender's blue butterfly were recently listed as endangered species Sources: Schultz and Hammond(2003)Conservation Biology 17: 1372-1385 Schultz(1998)Conservation Biology 12: 284-298 E.Cronepers.comm
Fender’s Blue Butterfly Pretty butterfly that lives in western Oregon Lays eggs on Kincaid’s Lupine Kincaid’s Lupine only grows in “old growth” prairies Prairies are prime land for farms, suburbs, shopping malls, universities… Both Kincaid’s Lupine and Fender’s Blue Butterfly were recently listed as endangered species. Sources: Schultz and Hammond (2003) Conservation Biology 17:1372-1385. Schultz (1998) Conservation Biology 12: 284-298 E. Crone, pers. comm. 2

Population Viability for Fender's blue yearly populat ion census in different patches assume Density independent growth . No observer error . No exceptional years Use exponential growth equation N(t+1)=N(t)+(r+)N(t) E=error term
Population Viability for Fender’s Blue Data: •Yearly population census in different patches Assume: •Density independent growth •No observer error •No exceptional years Use exponential growth equation N(t+1) = N(t) + (r + ε) N(t) ε = error term 3

Growth rate and variance for Fender's blue population growth rate population () Butterf Private Unprotected 412 Fern ridge Public Protected 1461 Fern Ridge Public Protected 1.338 Spires lane Willow Creek-Private Protected 1.34 0.692 Bailey hil Willow Creel Private 738 0.387 Main area Willow Creek- Private Protected 9 43 1.56 0.918 North area BasketButtePublic Protected 1.12 0436 99 0468 McTimmondsPublic 2.02 171 15 valle Mill creek IPublic Unprotected10 1.31 0607 Oak Ridge Private 49 Avg growth rate=1. 49 Avg variance=0.79 (for sites with> 25 butterflies=0.54) Chance of persistence Local (distanc Butterfly 0.92±0.3 67±0.220.2 <001 0.48±0.40 Willow Creck-0.15±0. IcTimmonds003±0.41 Creck 015±0.59
Growth rate and variance for Fender’s Blue Site Ownership Protected status Number of censuses Average population sizec Population growth rate (Ȝ) Variance in population growth rate (ı 2 ) Butterfly Meadowsd Private Unprotected 8 412 1.06 0.122 Fern Ridge – Eaton Lane Public Protected 9 5 2.66 1.461 Fern Ridge – Spires Lane Public Protected 9 22 1.92 1.338 Fir Butte Public Protected 8 54 1.61 0.861 Willow CreekBailey Hill Private Protected 9 77 1.34 0.692 Willow CreekMain Area Private Protected 9 738 1.15 0.387 Willow CreekNorth Area Private Protected 9 43 1.56 0.918 Basket Butte Public Protected 8 589 1.12 0.436 Gopher Valley Private Unprotected 8 10 0.99 0.468 McTimmonds Valley Public Unprotectede 9 11 2.02 1.715 Mill Creek Public Unprotectede 10 17 1.31 0.607 Oak Ridge Private Unprotected 9 149 1.21 0.448 Avg. growth rate = 1.49 Avg. variance = 0.79 (for sites with > 25 butterflies = 0.54) Chance of Persistence 4

Multiple patches= Metapopulation Chance of survival with no colonization is survival anywhere=1-I(1-survival) Chance of survival WITH colonization will be higher Metapopulation can survive even when all patches will Individually go extinct
Multiple Patches = Metapopulation Chance of survival with no colonization is: survival anywhere = 1 - Π (1 - survivali ) i Chance of survival WITH colonization will be higher Metapopulation can survive even when all patches will Individually go extinct 5

Prairie restoration Measure Flight paths chance to leave lupine area Model different habitat configurations and ask which increases survival the most Fender's blue Butterflies 10 d Fly.3 hours /day asperse within lupine -3 m2/s Disperse outside lupine- 15 m/s Weakly bias flight towards lupine patches utterfly might go 0. 75 km within lupi 2 km outside of lu Historically, patches. 5 km apart Now patches 3-30 km apart
Prairie Restoration Measure •Flight paths •Chance to leave lupine area •Daily time budget •Lifespan Model different habitat configurations and ask which increases survival the most. Fender’s Blue Butterflies: Live ~ 10 days Fly ~ 2.3 hours / day Disperse within lupine ~ 3 m2/s Disperse outside lupine ~ 15 m2/s Weakly bias flight towards lupine patches Butterfly might go 0.75 km within lupine 2 km outside of lupine Historically, patches ~ 0.5 km apart Now patches 3 - 30 km apart 6

Other Examples of recommendations Spotted Owls Save old growth trees Sea turtles Protect the adults, forget the eggs Sea otters Based Pva on risks of oil spills recommend number and area for recovery Problem Fender's blue study .8 years dedicated study by grad student, TNC personnel . Undergraduate field assistants .Lots of volunteers Impossible to do for very many species
Other Examples of Recommendations Spotted Owls Save old growth trees Sea Turtles Protect the adults, forget the eggs Sea Otters Based PVA on risks of oil spills, recommend number and area for recovery Problem Fender’s Blue study: •8 years dedicated study by grad student, TNC personnel •Undergraduate field assistants •Lots of volunteers Impossible to do for very many species 7

Indicator Species A well-studied species whose protection will also protect many other less weel-studied species What makes a good indicator?
Indicator Species A well-studied species whose protection will also protect many other less weel-studied species. What makes a good indicator? 8

Hot spots Places with high biodiversity, especially many endemic species Brooks et al., (2002) Habitat loss and extinction in the hots biodiversity Conservation Biology 16: 909-924
Hot Spots Places with high biodiversity, especially many endemic species 9 Brooks et al., (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology 16: 909-924

Save hotspots to save diversity? Myers et al. claim that 1. 4%of land area contains 44% of vascular plants and 35% of vertebrates Save 1. 4% and you save a good bit of worlds biodiversity Myers et al., (2000)Biodiversity hotspots for conservation priorities. Nature 403: 853-858 Mediterranean California Caribbean Province Polynesia/Mi M Brazils Cerrado W. African Western Darien/ Forests Ghats and Sri Lanka estern Polynesia/Micronesia Ecuador Brazils Succulent Central Caledon Chile Atlantic Karoo madagascar Cape floristic australia New Zealand Province Biodiversity hotspots for conservation priorities
Save Hotspots to Save Diversity? Myers et. al. claim that 1.4% of land area contains 44% of vascular plants and 35% of vertebrates Save 1.4% and you save a good bit of world’s biodiversity Myers et al., (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858. 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第18讲 捕食.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)一个关于做讲演的讲演.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第15讲 人口增长.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第 17 讲 竞争和生态位.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)阐释Tilman的方法.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第16讲 竞争.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)人口增长.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)全球气候变化讨论.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)繁殖为何需要等待?.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)种群生态学.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第10讲 硫循环.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第11讲 碳循环.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)全球物质循环.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第8讲 生物地化循环简介.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)大西洋 印度洋 太平洋.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第9讲 氮和磷的循环.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)鳕鱼.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第5讲 限制性营养和Redfield比.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)第6讲 次级生产力简介.pdf
- 麻省理工大学:《生态学基础》课程教学课件(双语版)限制性营养因子类比:焙烤甜饼.pdf
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第9章 免疫遗传基础(Immunogenetics).ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第10章 动物基因工程(Animal Genetic Engineering).ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第11章 动物基因组学(Animal Genomics).ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第2章 遗传的物质基础.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第3章 遗传的基本定律(1).ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第3章 遗传的基本定律(2).ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第4章 遗传信息的传递.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)总复习(Animal Genetics).ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)期末复习题.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第5章 遗传信息的改变.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第6章 动物群体的遗传结构.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第7章 动物数量性状的遗传.ppt
- 中国农业大学:《动物遗传学》课程教学资源(PPT课件讲稿)第8章 非孟德尔遗传(Non-Mendelian Inheritance).ppt
- 云南大学:《动物生物学》课程教学资源(PPT课件)节肢动物(主讲:肖衡).ppt
- 麻省理工大学:遗传学(Genetics)讲稿_lecture1.pdf
- 麻省理工大学:遗传学(Genetics)讲稿_lecture3.pdf
- 麻省理工大学:遗传学(Genetics)讲稿_lecture2.pdf
- 麻省理工大学:遗传学(Genetics)讲稿_lecture7.pdf
- 麻省理工大学:遗传学(Genetics)讲稿_lecture6.pdf
- 麻省理工大学:遗传学(Genetics)讲稿_lecture5.pdf