同济大学:《传播信道特征估计和建模》课程教案讲义(射线追踪)07 Deterministic channel modelling II – Examples

Deterministic radio propagation modeling and ray tracing 1) Introduction to deterministic propagation modelling 2) Geometrical Theory of Propagation I-The ray concept-Reflection and transmission 3) Geometrical Theory of Propagation II-Diffraction,multipath 4) Ray Tracing I 5) Ray Tracing II-Diffuse scattering modelling 6) Deterministic channel modelling I 7) Deterministic channel modelling II-Examples 8) Project -discussion
Deterministic radio propagation modeling and ray tracing 1) Introduction to deterministic propagation modelling 2) Geometrical Theory of Propagation I - The ray concept – Reflection and transmission 3) Geometrical Theory of Propagation II - Diffraction, multipath 4) Ray Tracing I 5) Ray Tracing II – Diffuse scattering modelling 6) Deterministic channel modelling I 7) Deterministic channel modelling II – Examples 8) Project - discussion

Envelope correlations (1/5) It is useful to define transfer function's envelope-correlations.Considering the module of the generic transfer function M(z)I in a e-kind domain z,the domain span△z and the average valueM,over△z we have:: "z-wise"correlation (envelope correlation) w(e-MlM(e+o-l] R(8)=4 R(0)=1,-1<R(⊙)s1 Jw(a-l了t {R(}=0 Especially frequency and space correlations are useful.The last one is fundamental for diversity techniques and MIMO
Envelope correlations (1/5) It is useful to define transfer function’s envelope-correlations. Considering the module of the generic transfer function |M(z)| in a e-kind domain z, the domain span Δz and the average value over Δz we have: “z-wise” correlation (envelope correlation) R z (δ ) = M (z) − M Δz ⎡ ⎣ ⎤ ⎦ M (z +δ ) − M Δz ⎡ ⎣ ⎤ ⎦ dz Δz ∫ M (z) − M Δz ⎡ ⎣ ⎤ ⎦ 2 dz Δz ∫ ; R z (0) = 1, −1< R z (δ ) ≤1 z M Δ Especially frequency and space correlations are useful. The last one is fundamental for diversity techniques and MIMO. lim δ→∞ R z { (δ )} = 0

Envelope correlations (2/5) Ex:frequency correlation Ja(r八-w]LHU+w-a风] R(w) JU-了 Space correlation (along the x direction) H(-l]He+-L] R(0=4 a(-l了
Envelope correlations (2/5) Space correlation (along the x direction) R x (l) = H (x) − H Δx ⎡ ⎣ ⎤ ⎦ H (x + l) − H Δx ⎡ ⎣ ⎤ ⎦ dx Δx ∫ H (x) − H Δx ⎡ ⎣ ⎤ ⎦ 2 dx Δx ∫ Ex: frequency correlation Rf (w) = H ( f ) − H Δf ⎡ ⎣ ⎤ ⎦ H ( f + w) − H Δf ⎡ ⎣ ⎤ ⎦ df Δf ∫ H ( f ) − H Δf ⎡ ⎣ ⎤ ⎦ 2 df Δf ∫

Envelope correlations (3/5) Ex.space correlation in a Rayleigh environment,i.e.with uniform 2D power- azimuth distribution with p)=1/2 is: 0元 R.(1)=J. 0.8 computation measurement -··Rayleigh(theoretic) 0.6 With Jo the zero-order Bessel's 0.4 function of the first kind.This means that the signal received from two Rx's 0.2 A2 apart is nearly uncorrelated (see figure),and this can be useful to decrease fast fading effects -0.2 0 0.5 11.5 22.5 33.5 Normalized distance d
Envelope correlations (3/5) Ex. space correlation in a Rayleigh environment, i.e. with uniform 2D powerazimuth distribution with pϕ(ϕ)=1/2π is: R x (l) = J 0 2πl λ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ With J0 the zero-order Bessel’ s function of the first kind. This means that the signal received from two Rx’s λ/2 apart is nearly uncorrelated (see figure), and this can be useful to decrease fast fading effects l/λ J0

Envelope correlations (4/5) Frequency correlation and time correlation allow a rigorous definition of coherence bandwidth and coherence time. Given a reference,residual frequency correlation "a",then coherence bandwidth is: B=币with R,(o)≤for w≥项 Similarly,given a reference,residual time correlation "a",then coherence time IS To=7 with R,()同sa fort≥i Coherence distance L.can also be defined in the following way: L9=I with R,(0)≤a forx≥l
Envelope correlations (4/5) Frequency correlation and time correlation allow a rigorous definition of coherence bandwidth and coherence time. Given a reference, residual frequency correlation “ a ”, then coherence bandwidth is: BC (a) = w with Rf (w) ≤ a for w ≥ w Similarly, given a reference, residual time correlation “ a ”, then coherence time is : TC (a) = t with R t(t ) ≤ a for t ≥ t Coherence distance Lc can also be defined in the following way: LC (a) = l with R x (l) ≤ a for x ≥ l

Envelope correlations (5/5) The higher the coherence distance Le the lower the angle spread All considered we have: B DS
Envelope correlations (5/5) The higher the coherence distance Lc the lower the angle spread. All considered we have: B c 0.1 1 DS L c 0.1 ≈ λ 4 1 σ Ω

Multidimensional parameters and MIMO (1/2) For optimum antenna/space diversity performance the received signal at the different antennas should be incorrelated,i.e.the signal envelope should have fast changes with space (along s). Therefore the power-angle profile should be very spread-there must be a large angle spread. To achieve good spatial multiplexing there must be a large number of strong paths well spaced(independent)in the angle domain in order for the MIMO matrix to have high rank-there must be a large angle spread. In other words there must be a high multipath richness Also absolute-time and Doppler domains(not considered here)are very important for space-time coding,i.e.transmit diversity and other MIMO coding techniques
Multidimensional parameters and MIMO (1/2) For optimum antenna/space diversity performance the received signal at the different antennas should be incorrelated, i.e. the signal envelope should have fast changes with space (along s). Therefore the power-angle profile should be very spread → there must be a large angle spread. To achieve good spatial multiplexing there must be a large number of strong paths well spaced (independent) in the angle domain in order for the MIMO matrix to have high rank → there must be a large angle spread. In other words there must be a high multipath richness Also absolute-time and Doppler domains (not considered here) are very important for space-time coding, i.e. transmit diversity and other MIMO coding techniques

Multidimensional parameters and MIMO (2/2) Angle spread and delay spread are two possibile measures of multipath richness. SNR remains however the most important parameter for the performance pf small-size MIMO schemes(i.e.2x2 or 4x4 etc) Recent studies have shown that for unnormalized channel,the channel capacity usually rises when moving from NLOS into LOS since the loss in multipath richness is more than compensated for by an increase in SNR. Dual-polarized MIMO schemes are very attractive as a doubling in the MIMO order is achieved with a less-than-proportional increase in the antenna size. In Dual polarized MIMO schemes the XPD(Cross-Polarization Discrimination) is very important.If the XPD is high (low correlation btw polarization states) then multiplexing is possible,otherwise polarization diversity is preferable
Multidimensional parameters and MIMO (2/2) Angle spread and delay spread are two possibile measures of multipath richness. SNR remains however the most important parameter for the performance pf small-size MIMO schemes (i.e. 2x2 or 4x4 etc) Recent studies have shown that for unnormalized channel, the channel capacity usually rises when moving from NLOS into LOS since the loss in multipath richness is more than compensated for by an increase in SNR. Dual-polarized MIMO schemes are very attractive as a doubling in the MIMO order is achieved with a less-than-proportional increase in the antenna size. In Dual polarized MIMO schemes the XPD (Cross-Polarization Discrimination) is very important. If the XPD is high (low correlation btw polarization states) then multiplexing is possible, otherwise polarization diversity is preferable

Multidimensional measurementsl*(1/2) Transmitter Receiver *]V-M.Kolmonen.J.Kivinen.L.Vuokko.P.Vainikainen."5.3 GHz MIMO radio channel sounder."IEEE Trans. Instrum.Meas.Vol.55.No.4.pp.1263-1269.Aug 2006
Multidimensional measurements[*] (1/2) Transmitters Receiver [*] V.-M. Kolmonen, J. Kivinen, L. Vuokko, P. Vainikainen, ”5.3 GHz MIMO radio channel sounder,” IEEE Trans. Instrum. Meas., Vol. 55, No. 4, pp. 1263-1269, Aug. 2006

Multidimensional measurements(2/2) Ex:power-angle 20° 30° profile at the Rx Street #2 Street 1 Dominant path structure P1,t,6,X,V1 Power profiles, etc
Multidimensional measurements (2/2) Impulse responses for each couple of antenna elements H(t) = h11 (t) . . h1M (t) . . . . . . . . hN1 (t) . . hNM (t) ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ Superresolution algorithm Es: SAGE RiMAX etc. Dominant path structure ρi ,ti ,θi , χi , ψi Power profiles, etc. Ex: power-angle profile at the Rx
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《传播信道特征估计和建模》课程教案讲义(射线追踪)06 Deterministic channel modelling I(static channel case).pdf
- 同济大学:《传播信道特征估计和建模》课程教案讲义(射线追踪)05 Ray Tracing II – Diffuse scattering modelling.pdf
- 同济大学:《传播信道特征估计和建模》课程教案讲义(射线追踪)04 Ray Tracing I - Deterministic ray models.pdf
- 同济大学:《传播信道特征估计和建模》课程教案讲义(射线追踪)03 Geometrical Theory of Propagation II - Diffraction, multipath.pdf
- 同济大学:《传播信道特征估计和建模》课程教案讲义(射线追踪)02 Geometrical Theory of Propagation I - The ray concept – Reflection and transmission.pdf
- 同济大学:《传播信道特征估计和建模》课程教案讲义(射线追踪)01 Deterministic radio propagation modeling and ray tracing - Introduction to deterministic propagation modelling.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(课件讲稿)Chapter 3 Generic channel models.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(课件讲稿)Chapter 2 Characterization of Propagation Channels.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(课件讲稿)Chapter 1 Introduction - History of Channel Characterization and Modeling.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 09 Practices - channel modeling for modern communication systems.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 08 Measurement based statistical channel modeling.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 07 Statistical channel parameter estimation.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 06 Deterministic channel parameter estimation.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 05 Channel measurements.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 04 Geometry based stochastic channel modeling.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 03 Generic channel models.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 02 Characterization of Propagation Channels.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Chapter 01 Introduction.pdf
- 同济大学:《传播信道特征估计和建模》课程教学资源(教案讲义)Propagation Channel Characterization, Parameter Estimation, and Modeling for Wireless Communications - Preface.pdf
- 长沙理工大学:《现代电信交换》课程PPT教学课件(程控交换)第6章 ATM交换与B-ISDN(异步传送模式——宽带综合业务数字网).ppt
- 数字电子技术基础学习方法.doc
- 模拟电子技术学习方法.doc
- 电子技术基础学习方法探索.pdf
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(一).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(二).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(三).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(四).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(五).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(六).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(七).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(八).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(九).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学模式试题及参考答案(十).doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学习题与答案(一)常用半导体器件.doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学习题与答案(七)信号的运算和处理.doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学习题与答案(三)多级放大电路.doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学习题与答案(二)基本放大电路.doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学习题与答案(五)放大电路的频率响应.doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学习题与答案(八)波形的发生和信号的转换.doc
- 山东第一医科大学:《医学影像电子学》课程教学资源(试卷习题)医学影像电子学习题与答案(六)放大电路中的反馈.doc