吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第七章 数字控制器的状态空间设计方法 7.5 状态观测器设计(2/2)

全维状态观测器 (4) 由前述可得 x(k+1)-(k+1)=Ax(k)+Bu(k)-(A-HC)(k)-Bu(k)-Hy(k) =(A-HC)[x(k)-(k)] 即 (k+1)=(A-HC)x(k) 若选怿合适的输出误差反馈矩阵日使得状态估计误 差系统的所有极点均位于z平面单位圆内,则误差可在 有限拍内趋于零,即状态估计值在有限拍内可以跟踪上 真实状态,且极点越靠近原点状态估计误差趋于零的速 度越快,反之越慢
全维状态观测器(4) 由前述可得 即 若选择合适的输出误差反馈矩阵H使得状态估计误 差系统的所有极点均位于z平面单位圆内,则误差可在 有限拍内趋于零,即状态估计值在有限拍内可以跟踪上 真实状态,且极点越靠近原点状态估计误差趋于零的速 度越快,反之越慢。 ( )[ ( ) ˆ( )] ( 1) ˆ( 1) ( ) ( ) ( ) ˆ( ) ( ) ( ) A HC k k k k A k B k A HC k B k Hy k x x x x x u x u = − − + − + = + − − − − ( ) ~ ( 1) ( ) ~ x k + = A − HC x k

全维状态观测器 (5) 若指定状态观测器的特征值为 21,22,‘,2m 即期望的特征方程为 f(2)=(2-1(z-22)…(z-z) =z”+(-10(2+22+…+z0)z”+…+(-1)”z12…2n=0 状态观测器的特征多项式为 (2)=2I-(A-HC)=0 比较两式两边z各次幂项的系数可得到一个元方程组,可求得输出 误差反馈系数矩阵H。 例7.8
全维状态观测器(5) * * * 1 2 , , , n z z z * * * * o 1 2 * * * 1 * * * 1 2 1 2 ( ) ( )( ) ( ) ( 1)( ) ( 1) 0 n n n n n n f z z z z z z z z z z z z z z z − = − − − = + − + + + + + − = f z zI A HC o ( ) ( ) 0 = − − = 若指定状态观测器的特征值为 即期望的特征方程为 状态观测器的特征多项式为 比较两式两边z各次幂项的系数可得到一个n元方程组,可求得输出 误差反馈系数矩阵H。 例7.8

2,降维状态观测器 己知n维系统是能观则的,其输出矩阵的秩是m,则 说明系统状态有m个是可以直接观则的,不需要对系统 的n个状态全部进行观测,而只需对另外n-m个状态进行 观测p回。即回用n-维状态观测器代替全维状态观测 器。这种维数低于被控系统状态向量的观测器称为降维 观测器。 >单输入多输出系统降维观测器的设计 已知n维线性定常离散系统(A,b,C)能观测 x(k+1)=Ax(k)+bu(k) y(k)=Cx(k) 其中,x()为n维状态向量,y(k)为m维输出列向量
2. 降维状态观测器(1) 已知n维系统是能观测的,其输出矩阵的秩是m,则 说明系统状态有m个是可以直接观测的,不需要对系统 的n个状态全部进行观测,而只需对另外n-m个状态进行 观测即可。即可用n-m维状态观测器代替全维状态观测 器。这种维数低于被控系统状态向量的观测器称为降维 观测器。 ➢ 单输入多输出系统降维观测器的设计 已知n维线性定常离散系统(A,b,C)能观测 其中,x(k)为n维状态向量,y(k)为m维输出列向量。 ( ) ( ) ( 1) ( ) ( ) k C k k A k bu k y x x x = + = +

降维状态观测器 (2 先将状态x()分解成两部分:可直接测量部分x(k)(mXI维); 不能直接测量需重构部分x(k)(n-m)×1维)。即 += 色 (k)=[0 其中A1为(n-m)×(n-m)维;A12为(n-m)×m维;A21为m×(n-m)维; A22为m×(n-m)维;b1为(n-m)×1维,b2为m×1维。 x(k+1)=Ax(k)+42x2(k)+bu(k) x2(k+1)=A21x(k)+A22x2(k)+b2u(k) 为了用可直接观测的x()估计不可直接观测的x1(k),引入一个虚 拟输出 (k)=A21x1(k)=x2(k+1)-A22x2(k)-b2u(k)
降维状态观测器(2) 先将状态x(k)分解成两部分:可直接测量部分x2 (k)(m×1维); 不能直接测量需重构部分x1 (k)((n-m)×1维)。即 其中A11为(n-m)×(n-m)维;A12为(n-m)×m维;A21为m×(n-m)维; A22为m×(n-m)维;b1为(n-m)×1维; b2为m×1维。 为了用可直接观测的x2 (k)估计不可直接观测的x1 (k) ,引入一个虚 拟输出 ( ) ( ) ( ) ( 1) ( 1) ( 1) 2 1 2 1 2 1 2 2 1 1 1 2 2 1 u k b b k k A A A A k k k + = + + + = x x x x x = ( ) ( ) ( ) [0 ] 2 1 k k k I x x y ( ) ( ) ( 1) ( ) ( ) 21 1 2 22 2 2 z k = A x k = x k + − A x k − b u k 1 11 1 12 2 1 x x x ( 1) ( ) ( ) ( ) k A k A k b u k + = + + 2 21 1 22 2 2 x x x ( 1) ( ) ( ) ( ) k A k A k b u k + = + +

降维状态观测器 (3) 观测器模型结构 整个系统的降维状态观测器实际上相当于全维观侧器的 子系统。因此采用与全维观测器相同的输出误差反馈思 想,构造降维观测器,其结构如图7.7所示。 x2() A12 H(k x() 2) z1 A21 H z() 图77降维状态观测器结构
降维状态观测器(3) ✓ 观测器模型结构 整个系统的降维状态观测器实际上相当于全维观测器的 子系统。因此采用与全维观测器相同的输出误差反馈思 想,构造降维观测器,其结构如图7.7所示。 图7.7 降维状态观测器结构

降维状态观测器 (4) 观测器方程为 x(k+1)=A1x(k)+A12x2(k)+bu(k)+H[z(k)-(k)] =(A11-HA21)x1(k)+A12x2(k)+b4(k)+H(k) k)=42(k) 令观测器状态误差为 x( 划 x()=x(2)-x(E) 同全维观测器情况类似,因为 x(k+1)=A1(k)+A2x2(k)+bu(k)且(k)=A21飞(k Dx(k+1)=x(k+1)-(k+1) =Ax(k)+A2x2()+b,u(k)-(A1-HA2)x(2)-A2x2(k)-b,u(k)-Hz(k) =(A1-HA2i[x(k)-x(k】 =(A1-HA2)x()
降维状态观测器(4) 观测器方程为 令观测器状态误差为 同全维观测器情况类似,因为 ( ) ˆ ( ) ( ) ( ) ( ) ˆ ( 1) ˆ ( ) ( ) ( ) [ ( ) ˆ( )] 1 1 2 1 1 1 2 2 1 1 1 1 1 1 2 2 1 A HA k A k b u k H k k A k A k b u k H k k x x z x x x z z = − + + + + = + + + − ˆ( ) ˆ ( ) 21 1 z k = A x k = − 1 1 1 x x x ( ) ( ) ( ) k k k ˆ + = + − + = + + − − − − − = − − = − 1 1 1 11 1 12 2 1 11 21 1 12 2 1 11 21 1 1 11 21 1 ( 1) ( 1) ( 1) ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ˆ ( )[ ( ) ( )] ˆ ( ) ( ) k k k A k A k b u k A HA k A k b u k H k A HA k k A HA k x x x x x x x z x x x 1 11 1 12 2 1 x x x ( 1) ( ) ( ) ( ) k A k A k b u k + = + + 21 1 且 z x ( ) ( ) k A k =

降维状态观测器 (5) 降维观测器的实现 将Z表达式代入观测器方程中,得 x(k+1)=A,x(k)+A2x2(R)+bu(k)+H[z(k)-2()] =(A1-HA21)()+A2x2(k)+b,u(k)+Hz() =(A1-HA21)x(®)+A12x2()+b,u(k)+Hx2(k+1)-HA22x2()-Hb2u(k) =(A-HA2)x(k)+(A2-HA2)x2(k)+(b-Hb2)u(k)+Hx2(k+1) 上式中x2(k),(k)可直接得到,但最后一项HX2(k什1)实现有困难,因 x2(k什1)是预测值。这时可采用图7.8结构变换法,则得到降维状态观 测器实现的结构如图7.9所示。 例7.9 Hx2(k+1) 丑2() 图78降维状态观测器实现的结构变换法示意
降维状态观测器(5) + = + + + − = − + + + = − + + + + − − = − + − + − + + 1 11 1 12 2 1 11 21 1 12 2 1 11 21 1 12 2 1 2 22 2 2 11 21 1 12 22 2 1 2 2 ˆ ( 1) ( ) ( ) ( ) [ ( ) ( )] ˆ ˆ ( ) ( ) ( ) ( ) ( ) ˆ ( ) ( ) ( ) ( ) ( 1) ( ) ( ) ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ˆ k A k A k b u k H k k A HA k A k b u k H k A HA k A k b u k H k HA k Hb u k A HA k A HA k b Hb u k H k x x x z z x x z x x x x x x x 1) ✓ 降维观测器的实现 将z表达式代入观测器方程中,得 上式中x2 (k),u(k)可直接得到,但最后一项Hx2 (k+1)实现有困难,因 x2 (k+1)是预测值。这时可采用图7.8结构变换法,则得到降维状态观 测器实现的结构如图7.9所示。 例7.9 图7.8 降维状态观测器实现的结构变换法示意
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第七章 数字控制器的状态空间设计方法 7.5 状态观测器设计(1/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第七章 数字控制器的状态空间设计方法 7.3 状态反馈设计法.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第二章 计算机控制系统设计的硬件基础 2.1 开关量输入.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第七章 数字控制器的状态空间设计方法 7.2 线性定常离散系统的能控性和能观性.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第七章 数字控制器的状态空间设计方法 7.1 线性系统的状态空间描述及线性离散系统状态空间.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第六章 计算机控制系统的直接设计法 6.5 数字控制器的频域设计法.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第六章 计算机控制系统的直接设计法 6.3 纯滞后对象的控制算法(4/4)6.4 设计数字控制器的根轨迹法.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第六章 计算机控制系统的直接设计法 6.3 纯滞后对象的控制算法(3/4).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第六章 计算机控制系统的直接设计法 6.3 纯滞后对象的控制算法(2/4).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第六章 计算机控制系统的直接设计法 6.3 纯滞后对象的控制算法(1/4).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第六章 计算机控制系统的直接设计法 6.1 概述 6.2 最少拍控制系统设计.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第五章 计算机控制系统的间接设计法 5.5 数字PID控制器的参数整定.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第五章 计算机控制系统的间接设计法 5.4 数字PID控制器算法的改进(2/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第一章 绪论 1.3 计算机控制理论 1.4 计算机控制系统应用实例 1.5 计算机控制系统的发展.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第五章 计算机控制系统的间接设计法 5.4 数字PID控制器算法的改进(1/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第五章 计算机控制系统的间接设计法 5.3 数字PID控制器的设计.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第五章 计算机控制系统的间接设计法 5.2 基本设计方法(2/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第五章 计算机控制系统的间接设计法 5.1 概述 5.2 基本设计方法(1/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第四章 计算机控制系统特性分析 4.4 离散系统根轨迹和频率特性.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第四章 计算机控制系统特性分析 4.2 计算机控制系统的动态特性 4.3 计算机控制系统的稳态误差.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第七章 数字控制器的状态空间设计方法 7.6 应用状态观测器的状态反馈系统 7.7 二次型最优控制算法设计.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第八章 计算机控制系统设计 8.1 计算机控制系统的设计步骤.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第八章 计算机控制系统设计 8.2 数字伺服系统 8.3 双闭环直流数字调速系统(1/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第八章 计算机控制系统设计 8.3 双闭环直流数字调速系统(2/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第八章 计算机控制系统设计 8.4 电阻炉温度控制系统.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第八章 计算机控制系统设计 8.5 数字程序控制系统(1/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第八章 计算机控制系统设计 8.5 数字程序控制系统(2/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第二章 计算机控制系统设计的硬件基础 2.2 开关量输出 2.3 模拟量输入.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第九章 新型计算机控制系统 9.1 嵌入式系统.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第九章 新型计算机控制系统 9.2 集散控制系统.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第九章 新型计算机控制系统 9.3 现场总线控制系统.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第九章 新型计算机控制系统 9.4 网络控制(1/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第九章 新型计算机控制系统 9.4 网络控制(2/2).ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第九章 新型计算机控制系统 10.3 电源与供电系统的抗干扰措施.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)复习讲稿1-3.4.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)复习讲稿4-6.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)复习讲稿8-10.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第二章 计算机控制系统设计的硬件基础 2.4 模拟量输出.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第二章 计算机控制系统设计的硬件基础 2.5 计算机控制系统中的电源.ppt
- 吉林大学:《计算机控制技术》课程教学资源(PPT课件讲稿)第二章 计算机控制系统设计的硬件基础 2.6 信号采样与重构.ppt