《自动控制原理》课程教学资源(PPT课件讲稿)Module13 nyquist stability Criterion

Module 13 Nyquist Stability Criterion (4 hours)
Module 13 Nyquist Stability Criterion (4 hours)

13.1 Conformal Mapping: Cauchy's Theorem (保角映射:柯西定理) Recall Stability Problem: To determine the relative stability of a closed-loop system we must investigate the characteristic equation of the system 1+GH(s)=0 Where GH(S)or 1+ GH(s)is a complex function of s, and the difference between GH(s) and 1+ GH(s) is only 1. So (1)We can investigate 1+ GH(s) through GH(S) (2)How to investigate GH(S)?----If s has a variation, then GH(s) has a variation certainly. We can suppose the variation of s, to see the change of GH(S)
13.1 Conformal Mapping: Cauchy’s Theorem ( 保角映射: 柯西定理 ) Recall Stability Problem: To determine the relative stability of a closed-loop system, we must investigate the characteristic equation of the system: 1+ GH(s) = 0 Where GH(s) or 1+ GH(s) is a complex function of s , and the difference between GH(s) and 1+ GH(s) is only 1. So (1) We can investigate 1+ GH(s) through GH(s) ; (2) How to investigate GH(s) ? ---- If s has a variation , then GH(s) has a variation certainly. We can suppose the variation of s, to see the change of GH(s)

Mapping F(S) S-2 M -2 F(s)= M∠φ P (s-P2) =∑∠-=,-∑么s We are concern with the mapping of contours in the s-plane by a function F(s). A contour map is a contour or trajectory in one plane mapped or translated another plane by a relation F(S) Since s is a complex variable: s=o +jo, the function F(s) is itself complex; it can be defined as F(s)=u+jv and can be represented on a complex F(s)-plane with coordinates u and v S1=-1+1 F(S)=23sF1=2+j2 [F8 Mapping
= − − = M s p s z F s i j ( ) ( ) ( ) s F(s) ⎯Mapping ⎯ ⎯→ We are concern with the mapping of contours in the s – plane by a function F(s) . A contour map is a contour or trajectory in one plane mapped or translated another plane by a relation F(s) . Since s is a complex variable: s = σ +jω, the function F(s) is itself complex; it can be defined as F(s) = u + jv and can be represented on a complex F(s) – plane with coordinates u and v. jω σ [s] u [F(s)] jv S1=-1+j1 F1=-2+j2 Mapping F(S)=2s − − = i j s p s z M = − j − − pi s z s

As an example, let us consider a function F(s=25 I and a contour in the s-plane. The mapping of the s- plane unit square contour to the F(s)-plane is accomplished through the relation F(s), and so 20+ l1+jy=F(s)=2+1=2(a+jO)+1 v=20 F(s-plane j2H S-plane 0 2 B
s-plane F(s)-plane As an example, let us consider a function F(s) = 2s + 1 and a contour in the s – plane. The mapping of the s – plane unit square contour to the F(s) – plane is accomplished through the relation F(s) , and so u + j v = F(s) = 2s +1= 2( + j ) +1 2 2 1 = = + v u

Example 2 F(s) s+2 1+jI D →F() 1+l+2 jI A 0 少B
Example 2. 2 ( ) + = s s F s 1 1 1 2 1 1 : 1 1 ( ) j j j D s j F s D = − + + − + = − + =

Example 3.F(S (b)
Example 3. 2 1 ( ) + = s s F s

S-2 FC(s-2 M P II(s-p) =M∠p ∠(S-=) (S-p1) △S-z △M= A=以A=∑A(s==)∑A(s-P) 中 contour F Contour 中r P2 P1 中 (b)
= − − = M s p s z F s i j ( ) ( ) ( ) − − = i j s p s z M =( − ) −( − ) j pi s z s − − = i j s p s z M =( − ) −( − ) j pi s z s

Cauchy's Theorem The encirclement of the poles and zeros of F(s) can be related to the encirclement of the origin in the F(s)-plane by Cauchy's theorem, commonly known as the principle of the argument, which state If a contour Is in the s-plane encircles Z zeros and P poles of f(s) and does not pass through any poles or zeros of f(s)and the traversal is in the clockwise direction along the contour, the corresponding contour TF in the f(s-plane encircles the origin of the F(S)- plane n=z-p times in the clockwise direction
• The encirclement of the poles and zeros of F(s) can be related to the encirclement of the origin in the F(s)-plane by Cauchy’s theorem, commonly known as the principle of the argument, which state: Cauchy’s Theorem • If a contour Γs in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles or zeros of F(s) and the traversal is in the clockwise direction along the contour, the corresponding contour ΓF in the F(s)-plane encircles the origin of the F(s)- plane N = Z – P times in the clockwise direction

Ex. 4 Ts (a) J J Ex 5 (b)
Ex. 4 Ex. 5

Im F(s) 3|-2-1 Re f(s) Plot of F(sy .The image of the path encircling the zero encircles the origin once in the clockwise direction .The image of the path encircling the pole encircles the origin once in the counter-clockwise direction .The image of the path encircling neither does not encircle the origin
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module12.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module10.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module10-11.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 2-examples.ppt
- 《自动控制原理》课程教学资源:Hw_Part.pdf
- 《自动控制原理》课程教学资源:XK2自动控制理论基本实验指导书.doc
- 《自动控制原理》课程教学资源:XK1信号与系统基本实验指导书.doc
- 《自动控制原理》课程教学资源(PPT课件讲稿)2005自控学习向导1.ppt
- 《自动控制原理》课程教学资源:教学日历.doc
- 《电工基础》课程教学资源(PPT课件讲稿)第四章 三相正弦交流电路.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第六章 非正弦周期电流电路.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第八章 磁路与交流铁心线圈.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第五章 含有互感元件的电路.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第二章 电阻性电路的分析.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第三章 单相正弦交流电路.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第七章 动态电路的暂态分析.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第一章 电路的基本概念和基本定律.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)封面及目录.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)各章习题与解答(共八章).ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module14 yquist Analysis and Relative stability(I hours).ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module15 Bode Diagram.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 2 Transfer Function and Block Diagram Algebra.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 3 First-Order SystemModule3.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 4 Second-Order System.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 5 Second-Order System Time-Domain Response.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 6 Second-Order System Disturbance Rejection and Rate Feedback.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 7 Higher- Order Systems.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 8 System lype Steady-State Error and Muriple control.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module g Routh's method Root locus Magnitude and Phase equations.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module_example.ppt
- 《自动控制原理》课程教学资源:课程简介.doc
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:作业1.ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:第一章 空调系统(空调系统概述).ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:第一章 空调系统(空调系统分类).ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:第二章 空调设备(空气热湿处理设备、空调冷热源).ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:第二章 空调设备(空调消声减振设备、空调风口、空调水系统).ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:绪论(方荔华).ppt
- 注册电气工程师(供配电)&注册公用设备工程师(暖通空调)执业资格考试辅导教材:《公共基础部分》PDF电子书(中国电力出版社:李惠昇).pdf
- 清华大学出版社:《PLC原理与应用》课程教学资源(PPT课件)第3章 三菱FX系列PLC基本指令(1/2).ppt