《自动控制原理》课程教学资源(PPT课件讲稿)Module14 yquist Analysis and Relative stability(I hours)

Module 14 Nyquist Analysis and Relative stabilitv (I hours) Gain margin Phase margin
Module 14 Nyquist Analysis and Relative Stability (1 hours) • Gain Margin • Phase Margin

14. 1 Conditional Stability(条件稳定性) Example 1 (P272)F() K (2.+1)(3s+1 K Im OV(2O)2+1V(30)2+1 p=∠GH=-900-g-20-1g-30 when 9=-180 M=-K vhen=K<1(k<0.83) The system is stable Flg. 14.1 Nyquist diagrams for different values of K
14.1 Conditional Stability (条件稳定性) (2 1)(3 1) ( ) + + = s s s K F s (2 ) 1 (3 ) 1 2 2 + + = K M 90 2 3 −1 −1 = G H = − −t g −t g Example 1 (P272) when = −180 M K 5 6 6 1 = = 1( 0.83) 5 6 when K K The system is stable

I Re Unit circle Flg. 14.1 Nyquist diagrams for different values of K Fig. 14.8 Phase margin for stable and unstable systems K=0832 Fig. 14.2 Root locus for example system

Conclusion( p274: 1.-5.) 1. Write the open-loop transfer function in Bode form,and write down expressions for the magnitude and phase 2.Sketch the Nyquist diagram for an arbitrary value of gain to determine whether the critical point passes to the left or right of an observer moving along the frequency response curve in the direction of increasing frequency 3. USing computer method, if necessary, determine the frequency that makes the corresponding angle -180 4. Substitute this value of frequency into the magnitude equation and determine the corresponding magnitude 5. If the magnitude is less than unity and the critical point passes to the left, the system is stable; otherwise it is not
1. Write the open-loop transfer function in Bode form, and write down expressions for the magnitude and phase. 2. Sketch the Nyquist diagram for an arbitrary value of gain to determine whether the critical point passes to the left or right of an observer moving along the frequency response curve in the direction of increasing frequency. 3. Using computer method, if necessary, determine the frequency that makes the corresponding angle -180º. 4. Substitute this value of frequency into the magnitude equation and determine the corresponding magnitude. Conclusion ( P274: 1. ~ 5. ) 5. If the magnitude is less than unity and the critical point passes to the left, the system is stable; otherwise it is not

14.2 Gain and Phase Margins Ex. 1 Ex 2 Margin Small Great margin margin Great margin Incircle Flg. 14.1 Nyquist diagrams for different values Fig. 14.8 Phase margin for stable and unstable systems
14.2 Gain and Phase Margins Ex. 1 Ex. 2 Great margin Small margin No Margin ψ3 Great margin

Gain and Phase Margins: The closeness of the GH(jo)cure to-1 is a measure of the relative stability of the system. There are two numbers reflecting this measure Gain and Phase margin GM GM-gain margin ①三0 GM= GH(O) crossover freqency y-phase margin =PM=180°+∠GH(O,)GM=20lo 20logGHGo GHg
180 ( ) u = PM = +GH j

Gain margin The increase in the system gain when phase 180 that will result in a marginally stable system with intersection of the-1+jo point on the Nyquist diagram
Gain margin • The increase in the system gain when phase = — 180ºthat will result in a marginally stable system with intersection of the -1+ j0 point on the Nyquist diagram

Phase margin The amount of phase shift of the ghg)at unity magnitude that will result in a marginally stable system with intersections of the -1+j0 point on the Nyquist diagram
Phase margin • The amount of phase shift of the GH(jω) at unity magnitude that will result in a marginally stable system with intersections of the - 1 + j0 point on the Nyquist diagram

Other Example 2 0 K K GH(S) GH(S) S(71s+1)(T2S+1) S(71S+1)(T2S+1)
Other Example ( 1)( 1) ( ) 1 + 2 + = s T s T s K GH s ( 1)( 1) ( ) 1 + 2 + = s T s T s K GH s

3 0 K K(71s+ GH(S) GH(S s(TS+l) s(2+D)(n>T2)
( ) ( 1) ( 1) ( ) 1 2 2 2 1 T T s T s K T s GH s + + = ( 1) ( ) 2 + = s Ts K GH s
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module13 nyquist stability Criterion.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module12.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module10.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module10-11.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 2-examples.ppt
- 《自动控制原理》课程教学资源:Hw_Part.pdf
- 《自动控制原理》课程教学资源:XK2自动控制理论基本实验指导书.doc
- 《自动控制原理》课程教学资源:XK1信号与系统基本实验指导书.doc
- 《自动控制原理》课程教学资源(PPT课件讲稿)2005自控学习向导1.ppt
- 《自动控制原理》课程教学资源:教学日历.doc
- 《电工基础》课程教学资源(PPT课件讲稿)第四章 三相正弦交流电路.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第六章 非正弦周期电流电路.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第八章 磁路与交流铁心线圈.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第五章 含有互感元件的电路.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第二章 电阻性电路的分析.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第三章 单相正弦交流电路.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第七章 动态电路的暂态分析.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)第一章 电路的基本概念和基本定律.ppt
- 《电工基础》课程教学资源(PPT课件讲稿)封面及目录.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module15 Bode Diagram.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 2 Transfer Function and Block Diagram Algebra.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 3 First-Order SystemModule3.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 4 Second-Order System.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 5 Second-Order System Time-Domain Response.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 6 Second-Order System Disturbance Rejection and Rate Feedback.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 7 Higher- Order Systems.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module 8 System lype Steady-State Error and Muriple control.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module g Routh's method Root locus Magnitude and Phase equations.ppt
- 《自动控制原理》课程教学资源(PPT课件讲稿)Module_example.ppt
- 《自动控制原理》课程教学资源:课程简介.doc
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:作业1.ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:第一章 空调系统(空调系统概述).ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:第一章 空调系统(空调系统分类).ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:第二章 空调设备(空气热湿处理设备、空调冷热源).ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:第二章 空调设备(空调消声减振设备、空调风口、空调水系统).ppt
- 《建筑设备工程 Architecture equipment engineering》课程教学资源:绪论(方荔华).ppt
- 注册电气工程师(供配电)&注册公用设备工程师(暖通空调)执业资格考试辅导教材:《公共基础部分》PDF电子书(中国电力出版社:李惠昇).pdf
- 清华大学出版社:《PLC原理与应用》课程教学资源(PPT课件)第3章 三菱FX系列PLC基本指令(1/2).ppt
- 清华大学出版社:《PLC原理与应用》课程教学资源(PPT课件)第1章 可编程控制器基础(主编:俞国亮).ppt