电子科技大学:《现代数字信号处理理论与算法 Modern theory and algorithm of digital signal processing》课程教学资源(课件讲稿)06 LS Method & RLS Algorithm

法国数学家勒让德于1806年首次发表最小二乘理论。 德国的高斯于1794年已经应用这一理论推算了谷神星的轨 道,但迟至1809年才正式发表。 CH6 LS Method RLS Algorithm RLS procedure is derived from least squares estimation theory. The LMS algorithm may then be viewed as a pruned version of the RLS algorithm. In contrast to the usual approach in which the LMS algorithm is derived from Wiener filter theory,based on steepest-descent optimization and instantaneous estimates of the process statistics
CH6 LS Method & RLS Algorithm RLS procedure is derived from least squares estimation theory. The LMS algorithm may then be viewed as a pruned version of the RLS algorithm. In contrast to the usual approach in which the LMS algorithm is derived from Wiener filter theory, based on steepest-descent optimization and instantaneous estimates of the process statistics. 法国数学家勒让德于1806年首次发表最小二乘理论。 德国的高斯于1794年已经应用这一理论推算了谷神星的轨 道,但迟至1809年才正式发表

Contents o S1.Introduction o S2.LS Method o S3.RLS algorithm o S4.Examples 2020-01-18 2
2020-01-18 2 Contents S1. Introduction S2. LS Method S3. RLS algorithm S4. Examples

S1.Introduction o 'given statistics'case Wiener filter theory:Probabilistic cost function statistical information on the stochastic processes involved is available. The Wiener-Hopf equations may be solved if the correlation matrix and cross-correlation vector are given. o‘given data'case In most applications,however,only data sequences are given,so that the process statistics have to be estimated from these data. Data based cost function. 2020-01-18 3
2020-01-18 3 S1. Introduction ‘given statistics’ case Wiener filter theory:Probabilistic cost function statistical information on the stochastic processes involved is available. The Wiener-Hopf equations may be solved if the correlation matrix and cross-correlation vector are given. ‘given data’ case In most applications, however, only data sequences are given, so that the process statistics have to be estimated from these data. Data based cost function

Self-designing filter o The filter is supplemented with an adaptation algorithm, ● monitor the environment (process statistics) vary the filter transfer function accordingly. 2020-01-18 4
2020-01-18 4 Self-designing filter The filter is supplemented with an adaptation algorithm, monitor the environment (process statistics) vary the filter transfer function accordingly

Detour:probabilistic machinery 0 In the 'given data'case,time averaging represents a practical means for the estimation of the process statistics (after invoking stationarity and ergodicity). o RLS algorithm may be derived starting from Wiener filter theory and employing time averaged estimates of the statistical parameters. o Viewing signals as realizations of stochastic processes,and then trying to estimate the corresponding process statistics is somewhat of a detour,which to some extent can be avoided. 2020-01-18 5
2020-01-18 5 Detour: probabilistic machinery In the ‘given data’ case, time averaging represents a practical means for the estimation of the process statistics (after invoking stationarity and ergodicity). RLS algorithm may be derived starting from Wiener filter theory and employing time averaged estimates of the statistical parameters. Viewing signals as realizations of stochastic processes, and then trying to estimate the corresponding process statistics is somewhat of a detour, which to some extent can be avoided

Direct approach o Data based cost function. A valid alternative to the probabilistic detour leads to comparable results (e.g.the RLS procedure) without having to rely on all the probabilistic machinery (stationarity, ergodicity,etc.) 2020-01-18 6
2020-01-18 6 Direct approach Data based cost function. A valid alternative to the probabilistic detour leads to comparable results (e.g. the RLS procedure) without having to rely on all the probabilistic machinery (stationarity, ergodicity, etc.)

True adaptive filtering O F Batch-mode processing ● a complete batch of data is available to design the optimal filter (i.e.the least squares parameter estimation problem). o True adaptive filtering:RLS The algorithm starts from a set of initial conditions,which may correspond to complete ignorance about the environment, ● And then adapts itself while doing the filtering operation. 2020-01-18 7
2020-01-18 7 True adaptive filtering Batch-mode processing a complete batch of data is available to design the optimal filter (i.e. the least squares parameter estimation problem). True adaptive filtering: RLS The algorithm starts from a set of initial conditions, which may correspond to complete ignorance about the environment, And then adapts itself while doing the filtering operation

S2.LS Method o The basic set-up of the filter o Data based cost function o LS estimation versus WF design o LS versus Orthogonal Principle o The sufficient-order problem o SVD solution o WLS,TLS,IRWLS... 2020-01-18 8
2020-01-18 8 S2. LS Method The basic set-up of the filter Data based cost function LS estimation versus WF design LS versus Orthogonal Principle The sufficient-order problem SVD solution WLS, TLS, IRWLS…

(1)basic set-up of the filter o Similar to WF o But the filter is fed by true data sequences instead of stochastic processes o The filter is fed by an input sequence either the FIR case or the linear combiner case o The error signal is e欧=d-w吸=康-ufW 1≤k≤L. 2020-01-18 9
2020-01-18 9 (1) basic set-up of the filter Similar to WF But the filter is fed by true data sequences instead of stochastic processes The filter is fed by an input sequence either the FIR case or the linear combiner case The error signal is

Matrix form ey d 吲 e d 吗 M 三 : : WN-1 eL dL 吲 W d U 2020-01-18 10
2020-01-18 10 Matrix form
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《现代数字信号处理理论与算法 Modern theory and algorithm of digital signal processing》课程教学资源(课件讲稿)05 卡尔曼滤波器 Kalman Filter.pdf
- 电子科技大学:《现代数字信号处理理论与算法 Modern theory and algorithm of digital signal processing》课程教学资源(课件讲稿)04 LMS Algorithm.pdf
- 电子科技大学:《现代数字信号处理理论与算法 Modern theory and algorithm of digital signal processing》课程教学资源(课件讲稿)03 Wiener Filter.pdf
- 电子科技大学:《现代数字信号处理理论与算法 Modern theory and algorithm of digital signal processing》课程教学资源(课件讲稿)02 PSD Estimation.pdf
- 电子科技大学:《现代数字信号处理理论与算法 Modern theory and algorithm of digital signal processing》课程教学资源(课件讲稿)01 Introduction to ADSP - Theory, Algorithm and Application.pdf
- IC封装设计与仿真(参考资料).pdf
- 山东省中等职业学校骨干教师专业技能分级培训入学测试题:电子电器应用与维修(中级)专业训前测试题.doc
- 山东理工大学:《电力电子》课程教学资源(实验指导书).pdf
- 山东理工大学:《电工学(电工技术)》课程教学资源(实验指导书).pdf
- 山东理工大学:《直流调速和交流调速》课程教学实验指导书(共五个实验).pdf
- 山东理工大学:《传感器》课程教学资源(实验指导书).pdf
- 山东理工大学:《电磁场与电磁波》课程教学实验指导书(共四个实验).pdf
- 山东理工大学:《数字电子技术基础》课程教学资源(实验指导书).pdf
- 山东理工大学:《模拟电子技术基础》课程教学资源(实验指导书).pdf
- 山东理工大学:《可编程控制器》课程教学实验指导书(共三章).pdf
- 山东理工大学:《高频电子线路》课程教学资源(实验指导书).pdf
- 山东理工大学:《电工学(电子技术)》课程教学资源(实验指导书).pdf
- 山东理工大学:《电子工艺》课程教学资源(实验指导书).pdf
- 山东理工大学:《电工电子技术》课程教学资源(实验指导书).pdf
- 山东理工大学:《电工电子工艺》课程教学资源(实验指导书).pdf
- 电子科技大学:《现代数字信号处理理论与算法 Modern theory and algorithm of digital signal processing》课程教学资源(课件讲稿)07 Array Signal Processing.pdf
- 电子科技大学:《现代数字信号处理理论与算法 Modern theory and algorithm of digital signal processing》课程教学资源(课件讲稿)08 盲信号处理 BSS.pdf
- 《数字电子技术》课程教学资源(课件讲稿)第六章 数模转换与模数转换 第二节 A/D 转换器.pdf
- 海南大学:《电路与电子技术(计算机电子电路)》课程教学资源(课件讲稿)第一章 直流电路分析方法.ppt
- 海南大学:《电路与电子技术(计算机电子电路)》课程教学资源(课件讲稿)第四章 放大器基础.ppt
- 海南大学:《电路与电子技术(计算机电子电路)》课程教学资源(课件讲稿)第三章 三相电路及其应用.ppt
- 海南大学:《电路与电子技术(计算机电子电路)》课程教学资源(课件讲稿)第二章 交流电路的基本分析方法.ppt
- 海南大学:《电路与电子技术(计算机电子电路)》课程教学资源(课件讲稿)第七章 门电路和组合逻辑电路.ppt
- 海南大学:《电路与电子技术(计算机电子电路)》课程教学资源(课件讲稿)第六章 集成运算放大器及其应用(集成运算放大器及其他模拟集成电路).ppt
- 海南大学:《电路与电子技术(计算机电子电路)》课程教学资源(课件讲稿)第八章 触发器和时序逻辑电路.ppt
- 海南大学:《电路与电子技术(计算机电子电路)》课程教学资源(课件讲稿)章节知识点复习(齐琦).ppt
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第1章 绪论(李兴明).pdf
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第2章 确定与随机信号分析.pdf
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第3章 数字调制方法 3.2 无记忆调制方法.pdf
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第3章 数字调制方法 3.3 有记忆信号的传输方式.pdf
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第3章 数字调制方法 3.4 数字调制信号的功率谱.pdf
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第4章 AWGN信道的最佳接收机 4.2 波形与矢量AWGN信道.pdf
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第4章 AWGN信道的最佳接收机 4.3 带限信号传输的最佳检测和错误概率.pdf
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第4章 AWGN信道的最佳接收机 4.4 功限信号传输的最佳检测和错误概率 4.5 不确定情况下的最佳检测(非相干检测).pdf
- 电子科技大学:《数字通信 Digital Communications》课程教学资源(课件讲稿)第4章 AWGN信道的最佳接收机 4.5 不确定情况下的最佳检测 4.6 数字信号传输方法的比较.pdf