中国人民大学:Similarity Measures in Deep Web Data Integration

Similarity Measures in Deep Web Data Integration Fangliao Jiang
Similarity Measures in Deep Web Data Integration Fangjiao Jiang

Outline Motivation Brief review on Existing Similarity Measures Challenges and Our Solutions Conclusion
Outline ◼ Motivation ◼ Brief Review on Existing Similarity Measures ◼ Challenges and Our Solutions ◼ Conclusion

Outline Motivation Brief Review on Existing Similarity Measures Challenges and Our Solutions Conclusion
Outline ◼ Motivation ◼ Brief Review on Existing Similarity Measures ◼ Challenges and Our Solutions ◼ Conclusion

Similarity measure an essential point in data integration Variations from Representation Typographical errors, misspellings, abbreviations, etc Extraction From unstructured or semi-unstructured documents or web pages 44W. 4th st 44 West fourth Street Smith Abroms “KFC Smoth abrams "Kentucky fried chicken' fR. Smith" i Richard smith'h
Similarity measure — an essential point in data integration Variations from: ◼ Representation Typographical errors, misspellings, abbreviations, etc ◼ Extraction From unstructured or semi-unstructured documents or web pages Smith Smoth 44 W. 4th St. 44 West Fourth Street "R. Smith" " Richard Smith" Abroms Abrams “KFC" “Kentucky Fried Chicken

Similarity measure an essential point in data integration Similarity measure will be applied to I Keyword search From key word query interface to structured query interface Schema matching From integrated query interface to local query interface Result merge Duplicate records detection(field level) Q={keyl,key2,…} Record record 1 Integrated Interface=k,, Record Record2 ocal Interface=, , Record3Record3 Record4→ Record4
Similarity measure — an essential point in data integration ◼ Similarity measure will be applied to: ◼ Keyword search From keyword query interface to structured query interface ◼ Schema matching From integrated query interface to local query interface ◼ Result merge Duplicate records detection (field level ) Q ={ , , …} Integrated Interface={ , ,…} Local Interface={ , ,…} key1 key2 Record1 Record2 Record3 Record4 Record1 Record2 Record3 Record4

Outline Motivation Brief review on Existing Similarity Measures Challenges and Our Solutions Conclusion
Outline ◼ Motivation ◼ Brief Review on Existing Similarity Measures ◼ Challenges and Our Solutions ◼ Conclusion

Similarity methods Similarity methods String Similarity Numeric Data Similarity Character-based Token-based Treated as strings Edit distance Atomic strings Affine gap distance WHIRL Smith -Waterman distance Q-grams with tf idf Jaro distance metric Q-gram distance
Similarity methods Similarity methods String Similarity Numeric Data Similarity Character-based Token-based Edit distance Affine gap distance Smith-Waterman distance Jaro distance metric Q-gram distance Atomic strings WHIRL Q-grams with tf.idf Treated as strings

edit distance edit distance, a.k.a. Levenshtein distance The minimum number of edit operations(insertions, deletions and substitutions) of single characters needed to transform the string SI into $2 E xample SI: unne cessarily Edit distance(s1, s2)=3 S2: un escessaraly O(SI, S2D Problem last names first names and street names that did not agree on a character-by- character basis For example: Similarity (John R Smith, Johathan Richard Smith)=11
Edit distance ◼ Edit distance, a.k.a. Levenshtein distance The minimum number of edit operations (insertions, deletions, and substitutions) of single characters needed to transform the string S1 into S2. ◼ Problem: last names, first names, and street names that did not agree on a character-bycharacter basis For example: Similarity(John R.Smith,Johathan Richard Smith)=11 ◼ Example1: S1:unne cessarily Edit distance(S1,S2)=3 S2:un escessaraly O(|S1| ,|S2|)

Affine gap distance Two extra edit operations: open gap and extend gap cost(g)=S+e×l(e<s), where s is the cost of opening a gap e is the cost of extending a gap, and l is the length of a gap in the alignment of two strings Example2(Affine gap distance) F.R.Smith o hn richard smi ith This method is better when matching strings have been truncated or shortened
Affine gap distance ◼ Two extra edit operations: open gap and extend gap cost(g) =s + e × l ( e<s ), where s is the cost of opening a gap, e is the cost of extending a gap, and l is the length of a gap in the alignment of two strings ◼ Example2 (Affine gap distance): ◼ This method is better when matching strings have been truncated or shortened "J. R. S m i t h“ " J o h n R i c h a r d S m i t h

Smith-Waterman distance Extension of edit distance and affine gap distance Mismatches at the beginning and the end of strings have lower cost than mismatches in the middle Example 3 ProfJohn r smith, University of Calgary" Johnr. smith Prof
Smith-Waterman distance ◼ Extension of edit distance and affine gap distance Mismatches at the beginning and the end of strings have lower cost than mismatches in the middle. ◼ Example 3 : “Prof.John R.Smith,University of Calgary“ “John R.Smith, Prof
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 清华大学:ICCV 2015 RIDE:Reversal Invariant Descriptor Enhancement.pptx
- 中国科学技术大学计算机学院:《高级操作系统 Advanced Operating System》课程教学资源(PPT课件)第四章 分布式进程和处理机管理(分布式处理机分配算法).ppt
- 香港科技大学:Web-log Mining:from Pages to Relations.ppt
- 《PowerPoint》课程PPT教学课件:第六章 使用PowerPoint创建演示文稿.ppt
- 南京大学:《嵌入式网络物理系统》课程教学资源(PPT讲稿)时光自动机 Timed Automata.ppt
- 《C程序设计》课程PPT电子教案:第一章 概述.ppt
- 《算法设计与分析 Design and Analysis of Algorithms》课程PPT课件:Tutorial 10.pptx
- 中国科学技术大学:《现代密码学理论与实践》课程教学资源(PPT课件讲稿)第1章 引言(主讲:苗付友).pptx
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)随机算法(主讲:方效林).pptx
- 动态内存分配器的实现(实验PPT讲稿).pptx
- Java面向对象程序设计:Java的接口(PPT讲稿).pptx
- 赣南师范大学:《计算机网络技术》课程教学资源(PPT课件讲稿)第十章 Internet概述.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第四章 语法分析——自上而下分析.ppt
- 《网络搜索和挖掘技术》课程教学资源(PPT讲稿)Lecture 1:Web Search Overview & Web Crawling.ppt
- 《程序设计语言》课程PPT教学课件(章节大纲).ppt
- 长春大学旅游学院:《计算机网络与网络安全》课程教学资源(PPT课件)第6章 计算机网络与网络安全.ppt
- JavaScript编程基础(JavaScript语法规则).ppt
- 《面向对象程序设计》课程PPT教学课件:第1章 Visual Basic概述(主讲:高慧).ppt
- 西安电子科技大学:Operating-System Structures(PPT讲稿).pptx
- 电子科技大学计算机学院:《现代密码学》课程PPT教学课件(密码学基础)第一章 引言.ppt
- 《数据结构》课程教学资源:课程PPT教学课件:绪论(数据结构讨论的范畴、基本概念、算法和算法的量度).ppt
- 《计算机组装与维修》课程教学资源(PPT课件讲稿)第二章 计算机系统维护维修工具使用.ppt
- 东南大学计算机学院:《操作系统概念 OPERATING SYSTEM CONCEPTS》课程教学资源(PPT课件)Operating-System Structures.ppt
- 《数字图像处理 Digital Image Processing》课程教学资源(PPT课件讲稿)第2章 图像分析.ppt
- 《EDA技术》实用教程(PPT讲稿)第5章 QuartusII 应用向导.ppt
- 香港浸会大学:《Data Communications and Networking》课程教学资源(PPT讲稿)Chapter 4 Transmission Media.ppt
- 北京大学:《搜索引擎 Search Engines》课程教学资源(PPT讲稿)Evaluating Search Engines(Search Engines Information Retrieval in Practice).ppt
- 西安电子科技大学:《8086CPU 指令系统》课程教学资源(PPT课件讲稿,共五部分,王晓甜).pptx
- 北京师范大学网络教育:《计算机应用基础》课程教学资源(PPT讲稿)第8章 计算机安全、第9章 多媒体技术.pptx
- 沈阳理工大学:《Java程序设计基础》课程教学资源(PPT课件讲稿)第1章 创建Java开发环境.ppt
- 成都信息工程大学(成都信息工程学院):分层分流培养个性发展的计算机卓越工程师——专业课分层教学探索与实践.ppt
- 厦门大学计算机科学系:《大数据技术原理与应用》课程教学资源(PPT课件)第十章 数据可视化.ppt
- SIGCOMM 2002:New Directions in Traffic Measurement and Accounting.ppt
- 计算机问题求解(PPT讲稿)图论中的其它专题.pptx
- 西安电子科技大学:《操作系统 Operating Systems》课程教学资源(PPT课件讲稿)Chapter 08 多处理器系统 Multiple Processor Systems.ppt
- 国家十一五规划教材:《电子商务案例分析》课程教学资源(PPT课件)第11章 网络社区模式案例分析.ppt
- 南京大学:《计算机图形学》课程教学资源(PPT课件讲稿)计算机图形学引言(主讲:路通).ppt
- 北京大学:浅谈计算机研究的层次与境界(李振华).pptx
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第七章 网络安全.ppt
- 西安电子科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)基于CORBA的分布式平台(CORBA编程-Hello World例程).ppt