《数值分析》课程教学资源(PPT讲稿)第五章 第五章 特征值与特征向量——幂法 Power Method(2/2)

Ch 5 Power Method -Deflation Technique >原点平移法/ deflation technique k)=AV(k-l) (@希望2/1越小越好 不妨设41>2≥…≥n,且 块定收敛的速度,特别 是|m =(2+xn) 4-4|=|a-(B+pD)|=|(-p)-B How are we supposed to know where p is? 所以求B特征根收 As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality. Albert Einstein(1879-1955)
Ch.5 Power Method – Deflation Technique ➢ 原点平移法 /* deflation technique */ = − = = n i i k i i k k k A x 1 1 1 ( ) ( 1) 决定收敛的速度,特别 是 | 2 / 1 | 希望 | 2 / 1 | 越小越好。 不妨设 1 > 2 … n,且 | 2 | > | n |。 n 2 1 O p = ( 2 + n ) / 2 思 路 令 B = A − pI ,则有 | I−A | = | I−(B+pI) | = | (−p)I−B | A − p = B。而 ,所以求B的特征根收 敛快。 | | | | | | | | 1 2 1 2 − − p p As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality. -- Albert Einstein (1879-1955) How are we supposed to know where p is?

Ch5 Power method -Inverse Power method >反幂法/ Inverse Power method* 若A有41|2|A2|2…>14n1|,则A1有元 λ1 对应同样一组特征向量。 A1的主特征根<A的绝对值最小的特征根 Q: How must we compute v(+)=A-v()in every step? A: Solve a linear system ay(ktD=v(k) with a factorized 若知道某一特征根λ的大致位置p,即对任意j≠i 思有4-p|<|4-P|,并且如果(-p)存在,则 路可以用反幂法求A-p)的主特征根1(x-p),收 敛将非常快
➢ 反幂法 /* Inverse Power Method */ Ch.5 Power Method –Inverse Power Method 若 A 有| 1 | | 2 | … > | n |,则 A−1 有 对应同样一组特征向量。 1 1 1 1 1 > … n n− A−1 的主特征根 A的绝对值最小的特征根 Q: How must we compute in every step? (k 1) 1 (k ) A + − = A: Solve a linear system with A factorized. (k 1) (k ) A = + 若知道某一特征根 i 的大致位置 p ,即对任意 j i 有| i − p | << | j − p | ,并且如果 (A − pI) −1存在,则 可以用反幂法求(A − pI) −1的主特征根 1/(i − p ) ,收 敛将非常快。 思 路

Ch 5 Power method -Inverse power method Lab 09. Approximating Eigenvalues Approximate an eigenvalue and an associated eigenvector of a given nxn matrix A near a given value p and a nonzero vector=(x,,,n) put There are several sets of inputs. For each set: aIn The 1st line contains an integer100≥n≥0 which21、0n is the size of a matrix. n=-l signals the end of file The following n lines contain the matrix entries in the format shown: The next line contains a real number Tol. which is the tolerance for eigenvalues, and an integer N20 which is the maximum number of iterations. The next line contains an integer n2 m>0 which is the number of eigenvalues to be approximated. Each of the following m lines contains a real number p which is an initial approximation of the eigenvalue, followed by n real number entries of the nonzero vector x=(x1,…,xn The numbers are separated by spaces and new lines. The inputs guarantee that the shifted matrix can be factorized by doolittle method
Ch.5 Power Method –Inverse Power Method Lab 09. Approximating Eigenvalues Approximate an eigenvalue and an associated eigenvector of a given nn matrix A near a given value p and a nonzero vector . Input There are several sets of inputs. For each set: The 1 st line contains an integer 100 n 0 which is the size of a matrix. n = −1 signals the end of file. The following n lines contain the matrix entries in the format shown: The next line contains a real number TOL, which is the tolerance for eigenvalues, and an integer N 0 which is the maximum number of iterations. The next line contains an integer n m > 0 which is the number of eigenvalues to be approximated. Each of the following m lines contains a real number p which is an initial approximation of the eigenvalue, followed by n real number entries of the nonzero vector . The numbers are separated by spaces and new lines. The inputs guarantee that the shifted matrix can be factorized by Doolittle method. n nn n n a a a a a a ... ... ... ... ... ... 1 21 2 11 1 T x x xn ( , ..., ) = 1 T x x xn ( , ..., ) = 1

Ch5 Power Method -Inverse Power Method Output( represents a space) For each p, there must be a set of outputs in the following format The ist line contains the approximation of an eigenvalue printed as in the c printe: fprintf(outfile, %128f\n", lambda ) The 2nd line contains the n entries of the associated eigenvector each entry is printed as in the c fprintf: fprintf(outfile %12. 8f",x); If the method fails to give a solution after N iterations, print the message “ Maximun■ number■of■ iterations■ exceeded.lni If p is just the accurate eigenvalue, print the message printf(outfile,“%12.8f■is■an■ eigenvalue.n”,p); The outputs of two test cases must be seperated by a blank line. Sample Input Sample output 1■2■ 0.62347538 2■3■4 ■1.00000000■■■0.17206558■■-0.65586885■ 3■4■5 0.0000000001■1000 ■■1.0000000is■an■ eigenvalue 0.6■1■1■1 0■1 1■0 0.0000000001■10 1.0■1■1
Ch.5 Power Method –Inverse Power Method Output ( represents a space) For each p, there must be a set of outputs in the following format: • The 1 st line contains the approximation of an eigenvalue printed as in the C printf: fprintf(outfile, "%12.8f\n", lambda ); • The 2 nd line contains the n entries of the associated eigenvector. Each entry is printed as in the C fprintf: fprintf(outfile, "%12.8f", x ); • If the method fails to give a solution after N iterations, print the message “Maximumnumberof iterationsexceeded.\n”. • If p is just the accurate eigenvalue, print the message fprintf(outfile, “%12.8fisaneigenvalue.\n” , p ); The outputs of two test cases must be seperated by a blank line. Sample Input 3 123 234 345 0.00000000011000 1 –0.6111 2 01 10 0.000000000110 1 1.011 –1 Sample Output –0.62347538 1.000000000.17206558–0.65586885 1.00000000isaneigenvalue
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数值分析》课程教学资源(PPT讲稿)第五章 第五章 特征值与特征向量——幂法 Power Method(1/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第四章 解线性方程组的迭代法(2/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第四章 解线性方程组的迭代法(1/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第三章 解线性方程组的直接法(2/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第三章 解线性方程组的直接法(1/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第二章 非线性方程求根(2/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第二章 非线性方程求根(1/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第一章 误差/Eror.ppt
- 《数值分析》课程教学资源(PPT讲稿)Numerical Analysis Laboratory projects.ppt
- 清华大学考研辅导班(暑期班)讲义:概率统计 第六讲 样本与抽样分布.pdf
- 清华大学:《概率统计》课程教学资源(考研辅导讲义)第五讲 大数定律与中心极限定理.pdf
- 清华大学:《概率统计》课程教学资源(考研辅导讲义)第四讲 随机变量的数字特征.pdf
- 清华大学:《概率统计》课程教学资源(考研辅导讲义)第三讲 多维随机变量及其概率分布.pdf
- 清华大学:《概率统计》课程教学资源(考研辅导讲义)第二讲 随机变量及其概率分布.pdf
- 清华大学:《概率统计》课程教学资源(考研辅导讲义)第一讲 随机事件与概率.pdf
- 《解析几何》 高等代数教案封面.doc
- 《解析几何》 第四章 柱面、锥面、旋转曲面与二次曲面.ppt
- 《解析几何》 第二章 轨迹与方程.ppt
- 《解析几何》 第三章 平面与空间直线.ppt
- 《应用随机过程教程》教学资源(参考资料)与在算法和智能计算中的应用——第17章 Poisson随机分析简介与典型的点过程.pdf
- 《数值分析》课程教学资源(PPT讲稿)第六章 插值 nterpolationη(1/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第六章 插值 nterpolationη(2/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第七章 曲线拟合与函数逼近(1/3).ppt
- 《数值分析》课程教学资源(PPT讲稿)第七章 曲线拟合与函数逼近(2/3).ppt
- 《数值分析》课程教学资源(PPT讲稿)第七章 曲线拟合与函数逼近(3/3).ppt
- 《数值分析》课程教学资源(PPT讲稿)第八章 数值积分(1/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第八章 数值积分(2/2).ppt
- 《数值分析》课程教学资源(PPT讲稿)第九章 常微分方程数值解(1/3).ppt
- 《数值分析》课程教学资源(PPT讲稿)第九章 常微分方程数值解(2/3).ppt
- 《数值分析》课程教学资源(PPT讲稿)第九章 常微分方程数值解(3/3).ppt
- 温师院数学与信息科学学院:《计算方法》课程教学资源(学习指导)计算方法学习指导(共六章).pdf
- 南京大学计算机科学与技术系:浅谈计算数学的过去和未来(PPT讲稿).ppt
- 《高等数学》课程教学资源:模拟试卷(专升本).doc
- 华南农业大学:《数值分析》 第八章 函数逼近.ppt
- 华南农业大学:《数值分析》 第七章 常微分方程的数值解法.ppt
- 华南农业大学:《数值分析》 第六章 数值积分与数值微分.ppt
- 华南农业大学:《数值分析》 MATLAB简介.ppt
- 华南农业大学:《数值分析》 第五章 插值法.ppt
- 华南农业大学:《数值分析》 总复习.ppt
- 华南农业大学:《数值分析》 第二章 方程(组)的迭代解法.ppt