中国高校课件下载中心 》 教学资源 》 大学文库

《医学遗传学》课程教学资源(教材讲义)第十一章 单基因遗传病

文档信息
资源类别:文库
文档格式:DOC
文档页数:24
文件大小:134KB
团购合买:点击进入团购
内容简介
突变的基因通过改变多肽链的质和量,使得蛋白质发生缺陷,由 此引起遗传病。如果疾病的发生由一对等位基因控制,即为单基因遗 传病。根据缺陷蛋白对机体所产生的影响不同,通常把这类疾病分为 分子病和先天性代谢缺陷两类。
刷新页面文档预览

第十一章单基因遗传病 突变的基因通过改变多肽链的质和量,使得蛋白质发生缺陷,由 此引起遗传病。如果疾病的发生由一对等位基因控制,即为单基因遗 传病。根据缺陷蛋白对机体所产生的影响不同,通常把这类疾病分为 分子病和先天性代谢缺陷两类 第一节分子病 分子病是指基因突变使蛋白质的分子结构或合成的量异常直接引 起机体功能障碍的一类疾病。包括血红蛋白病、血浆蛋白病、受体病、 膜转运蛋白病、结构蛋白缺陷病、免疫球蛋白缺陷病等。 Nel(1949)在研究一种呈常染色体隐性遗传的镰状细胞贫血时, 发现无症状的父母(杂合子)具有与患者相似的红细胞形态异常,只 是其程度较轻。同年,后来曾两度获得诺贝尔奖的著名学者 Pauling认 为这可能是由于血红蛋白分子的缺陷所致,并提出了分子病( molecular disease)这一概念。事实上随着现代医学进入分子医学时代,许多非 遗传性疾病也列入到分子病之中。 、血红蛋白病 血红蛋白( hemoglobin,Hb)是红细胞中具有重要生理功能的蛋 白质。血红蛋白分子合成异常引起的疾病称血红蛋白疾病 ( hemoglobinopathy),习惯上分为血红蛋白病和地中海贫血两类。血 红蛋白病表现为血红蛋白分子的珠蛋白肽链结构异常,如果发生在重 要功能部位的氨基酸被替代,将影响到血红蛋白的溶解度、稳定性等 生物学功能;地中海贫血的特征是珠蛋白肽链合成速度的降低,导致 α链和非α链合成的不平衡,在临床上表现为溶血性贫血。分子遗传

第十一章 单基因遗传病 突变的基因通过改变多肽链的质和量,使得蛋白质发生缺陷,由 此引起遗传病。如果疾病的发生由一对等位基因控制,即为单基因遗 传病。根据缺陷蛋白对机体所产生的影响不同,通常把这类疾病分为 分子病和先天性代谢缺陷两类。 第一节 分子病 分子病是指基因突变使蛋白质的分子结构或合成的量异常直接引 起机体功能障碍的一类疾病。包括血红蛋白病、血浆蛋白病、受体病、 膜转运蛋白病、结构蛋白缺陷病、免疫球蛋白缺陷病等。 Neel(1949)在研究一种呈常染色体隐性遗传的镰状细胞贫血时, 发现无症状的父母(杂合子)具有与患者相似的红细胞形态异常,只 是其程度较轻。同年,后来曾两度获得诺贝尔奖的著名学者Pauling认 为这可能是由于血红蛋白分子的缺陷所致,并提出了分子病(molecular disease)这一概念。事实上随着现代医学进入分子医学时代,许多非 遗传性疾病也列入到分子病之中。 一、血红蛋白病 血红蛋白(hemoglobin,Hb)是红细胞中具有重要生理功能的蛋 白 质 。 血 红 蛋 白 分 子 合 成 异 常 引 起 的 疾 病 称 血 红 蛋 白 疾 病 (hemoglobinopathy),习惯上分为血红蛋白病和地中海贫血两类。血 红蛋白病表现为血红蛋白分子的珠蛋白肽链结构异常,如果发生在重 要功能部位的氨基酸被替代,将影响到血红蛋白的溶解度、稳定性等 生物学功能;地中海贫血的特征是珠蛋白肽链合成速度的降低,导致 α链和非α链合成的不平衡,在临床上表现为溶血性贫血。分子遗传

学研究表明,不管是血红蛋白病还是地中海贫血,其分子基础是共同 的,都是珠蛋白基因的突变或缺陷所致 全世界至少有1.5亿人携带血红蛋白病或地中海贫血的基因,他们 主要分布于非洲、地中海地区和东南亚人群中。血红蛋白病在我国的 总发生率为0.24%~033%,以云南、贵州、广东、广西和新疆等地最 高,而a地中海贫血和β地中海贫血的发生率分别为264%和066%, 它们多见于华南、西南和华东地区 (一)血红蛋白分子的结构及发育变化 1.血红蛋白的分子结构血红蛋白是血液中红细胞携带、运输氧 气和二氧化碳的载体。它是一种结合蛋白,蛋白质部分称为珠蛋白 ( globin),辅基为血红素,结构为两对单体(亚基)组成的球形四聚 体(图11-1),其中一对由两条类α珠蛋白链(a链或ξ链)各结合 个血红素组成;另一对由两条类β珠蛋白链(ε、B、或δ链)各 结合一个血红素组成。α链长141个氨基酸,β链则由146个氨基酸组 成。在人个体发育的不同阶段,类a链和类β链的不同组合,构成了 人类常见的几种血红蛋白(表11-1)。 图1-血红蛋白的结构 表11-1正常人体血红蛋白 发育阶段 血红蛋白 分子组成 Gower ll a 2 E2 胎儿(8周至出生) a2^y2、a2°y2 成人 A(95%) A2(3% 2.珠蛋白基因及其表达特点人的6种珠蛋白链各由相应的珠蛋 白基因编码,包括类α珠蛋白基因和类β珠蛋白基因两类,它们各含 数个相同或相似的基因,紧密排列在DNA的特定区段,构成了基因簇 人的类珠蛋白基因簇中存在着一些拟基因( peudogene),如ψα、ψ

学研究表明,不管是血红蛋白病还是地中海贫血,其分子基础是共同 的,都是珠蛋白基因的突变或缺陷所致。 全世界至少有1.5亿人携带血红蛋白病或地中海贫血的基因,他们 主要分布于非洲、地中海地区和东南亚人群中。血红蛋白病在我国的 总发生率为0.24%~0.33%,以云南、贵州、广东、广西和新疆等地最 高,而α地中海贫血和β地中海贫血的发生率分别为2.64%和0.66%, 它们多见于华南、西南和华东地区。 (一)血红蛋白分子的结构及发育变化 1.血红蛋白的分子结构 血红蛋白是血液中红细胞携带、运输氧 气和二氧化碳的载体。它是一种结合蛋白,蛋白质部分称为珠蛋白 (globin),辅基为血红素,结构为两对单体(亚基)组成的球形四聚 体(图11-1),其中一对由两条类α珠蛋白链(α链或ζ链)各结合 一个血红素组成;另一对由两条类β珠蛋白链(ε、β、或δ链)各 结合一个血红素组成。α链长141个氨基酸,β链则由146个氨基酸组 成。在人个体发育的不同阶段,类α链和类β链的不同组合,构成了 人类常见的几种血红蛋白(表11-1)。 图11-1 血红蛋白的结构 表11-1 正常人体血红蛋白 发育阶段 血红蛋白 分子组成 胚胎 Gower I ζ2ε2 Gower II α2ε2 Portland ζ2 Aγ2、ζ2 Gγ2 胎儿(8周至出生) F α2 Aγ2、α2 Gγ2 成人 A (95%) α2β2 A2 (3%) α2δ2 2.珠蛋白基因及其表达特点 人的6种珠蛋白链各由相应的珠蛋 白基因编码,包括类α珠蛋白基因和类β珠蛋白基因两类,它们各含 数个相同或相似的基因,紧密排列在DNA的特定区段,构成了基因簇。 人的类珠蛋白基因簇中存在着一些拟基因(peudogene),如ψα、ψ

、ψβ。 类a珠蛋白基因簇定位于16 pter-pl33(OMM#141800),按5 3′方向排列顺序为:5′-52p1-a1-a2-a1-3′(图11-2) 总长度为30kb。每条16号染色体有2个a基因(正常a基因用aA表示), 正常的二倍体细胞有4个α基因,每个α基因表达的α珠蛋白数量相 同。类α珠蛋白基因的排列顺序与发育过程中表达顺序相一致。即发 育早期是5′端ξ表达,正常成人主要是3′端的α基因表达 图1-2类a珠蛋白基因簇和a珠蛋白基因的结构 人的类β珠蛋白基因簇定位于1lp155(OMM#141900),按5 3′方向排列顺序为:5′-y-4y-B1-6-B-3′(图11-3) 总长度为60kb。每条11号染色体只有1个β基因(正常β基因用βA表 示),正常的二倍细胞有2个β基因。类β珠蛋白基因的排列先后与发 育过程的表达顺序相关,发育早期是5′端ε、Y基因表达,成人期主 要为3′端β基因表达。 图113类β珠蛋白基因簇和β珠蛋白基因的结构 各种珠蛋白基因均含有3个外显子(E)和2个内含子(I)。α珠 蛋白基因的I位于31位和32位密码子之间,由117bp组成。12位于90位 和100位密码子之间,含140bp(图11-2)。β珠蛋白基因中的I位于30 位和31位密码子之间,为130bp;而2位于104位和105位密码子之间, 约850bp(图11-3)。 珠蛋白基因的表达受到精确的调控,表现出典型的组织特异性和 时间特异性。胚胎早朔(妊娠后3~8周),卵黄囊的原始红细胞发生 系统中,类α珠蛋白基因簇中的纟、a基因和类β珠蛋白基因簇中的 ε、γ基因表达,进而形成胚胎期血红蛋白( Hb gower I、 Hb Gower Ⅱ、 Hb portland)。胎儿期(妊娠8周至出生),血红蛋白合成的场所 由卵黄囊移到胎儿肝脾中,类α珠蛋白基因簇的表达基因由ξ全部变

ζ、ψβ。 类α珠蛋白基因簇定位于16pter-pl3.3(OMIM#141800),按5′ →3′方向排列顺序为:5′-ζ2-ψζ1-ψα1-α2-α1-3′(图11-2), 总长度为30kb。每条16号染色体有2个α基因(正常α基因用αA表示), 正常的二倍体细胞有4个α基因,每个α基因表达的α珠蛋白数量相 同。类α珠蛋白基因的排列顺序与发育过程中表达顺序相一致。即发 育早期是5′端ζ表达,正常成人主要是3′端的α基因表达。 图11-2 类α珠蛋白基因簇和α珠蛋白基因的结构 人的类β珠蛋白基因簇定位于11p15.5(OMIM#141900),按5′ →3′方向排列顺序为:5′-ε- Gγ- Aγ-ψβ1-δ-β-3′(图11-3), 总长度为60kb。每条11号染色体只有1个β基因(正常β基因用βA表 示),正常的二倍细胞有2个β基因。类β珠蛋白基因的排列先后与发 育过程的表达顺序相关,发育早期是5′端ε、γ基因表达,成人期主 要为3′端β基因表达。 图11-3 类β珠蛋白基因簇和β珠蛋白基因的结构 各种珠蛋白基因均含有3个外显子(E)和2个内含子(I)。α珠 蛋白基因的I1位于31位和32位密码子之间,由117bp组成。I2位于90位 和100位密码子之间,含140bp(图11-2)。β珠蛋白基因中的I1位于30 位和31位密码子之间,为130bp;而I2位于104位和105位密码子之间, 约850bp(图11-3)。 珠蛋白基因的表达受到精确的调控,表现出典型的组织特异性和 时间特异性。胚胎早朔(妊娠后3~8周),卵黄囊的原始红细胞发生 系统中,类α珠蛋白基因簇中的ζ、α基因和类β珠蛋白基因簇中的 ε、γ基因表达,进而形成胚胎期血红蛋白(Hb Gower Ⅰ、Hb Gower Ⅱ、Hb Portland)。胎儿期(妊娠8周至出生),血红蛋白合成的场所 由卵黄囊移到胎儿肝脾中,类α珠蛋白基因簇的表达基因由ζ全部变

成a基因,而类β珠蛋白基因簇基因的表达由e全部转移到y基因, 形成胎儿期血红蛋自HbF(a2y2)。成人期(出生后),血红蛋白主 要在骨髓红细胞的发育过程中合成,主要是a基因和β基因表达,其 产物组成HbA(a2B2)。 从类α珠蛋白基因簇和类β珠蛋白基因簇的组成可知,每个二倍 体个体带有4个α基因和2个β基因,但通过特殊的调控机制,正常人 体中α珠蛋白和β珠蛋白的分子数量相等,正好构成HbA(α2β2) 说明β基因的表达效率是a基因的2倍。类a和类β珠蛋白的平衡是人 体正常生理功能的需要。 (二)珠蛋白基因突变的类型 无论是血红蛋白病还是地中海贫血,都是以珠蛋白结构异常为特 征,由珠蛋白基因突变所致,包括碱基置换、移码突变、融合基因等 多种类型。 1.单个碱基替代这是血红蛋白疾病最常见的一种突变类型,见 于绝大多数血红蛋白病和β地中海贫血 2.移码突变由于珠蛋白基因中发生1、2个碱基的丢失或嵌入, 致使后面的碱基排列依次位移,导致重新编码,使珠蛋白肽链的结构 或合成速率改变。例如 Hb Wayne是由于α珠蛋白基因第138位的丝氨 酸密码子TCC(mRNA为UCC)丢失1个C,导致其后的3′端碱基向5 端依次位移,重新组合及编码,结果使原来142位的终止密码子UAA 变成可读密码子AAG(赖氨酸),使翻译至下一终止密码(147位)才 终止,α链延长为146个氨基酸。 3.密码子的缺失和嵌入己发现有一些异常血红蛋白缺失或嵌入 部分氨基酸。这是由于在细胞减数分裂时,同源染色体发生错配和不 等交换,导致编码密码子的DNA三联碱基缺失或嵌入。 4.无义突变无义突变是指突变使正常密码子变为终止密码子 因此蛋白质链的合成便提前终止,导致地中海贫血。例如Hb Mckees-Rock,其α链正常,β链缩短为144个氨基酸。原因是β珠蛋 白基因第154位酪氨酸密码子TAT突变成终止密码子TAA(T→A), 对应的mRNA变化为UAU→UAA,使肽链合成提前终止

成α基因,而类β珠蛋白基因簇基因的表达由ε全部转移到γ基因, 形成胎儿期血红蛋自HbF(α2γ2)。成人期(出生后),血红蛋白主 要在骨髓红细胞的发育过程中合成,主要是α基因和β基因表达,其 产物组成HbA(α2β2)。 从类α珠蛋白基因簇和类β珠蛋白基因簇的组成可知,每个二倍 体个体带有4个α基因和2个β基因,但通过特殊的调控机制,正常人 体中α珠蛋白和β珠蛋白的分子数量相等,正好构成HbA(α2β2)。 说明β基因的表达效率是α基因的2倍。类α和类β珠蛋白的平衡是人 体正常生理功能的需要。 (二)珠蛋白基因突变的类型 无论是血红蛋白病还是地中海贫血,都是以珠蛋白结构异常为特 征,由珠蛋白基因突变所致,包括碱基置换、移码突变、融合基因等 多种类型。 1.单个碱基替代 这是血红蛋白疾病最常见的一种突变类型,见 于绝大多数血红蛋白病和β地中海贫血。 2.移码突变 由于珠蛋白基因中发生1、2个碱基的丢失或嵌入, 致使后面的碱基排列依次位移,导致重新编码,使珠蛋白肽链的结构 或合成速率改变。例如Hb Wagne是由于α珠蛋白基因第138位的丝氨 酸密码子TCC(mRNA为UCC)丢失1个C,导致其后的3′端碱基向5′ 端依次位移,重新组合及编码,结果使原来142位的终止密码子UAA 变成可读密码子AAG(赖氨酸),使翻译至下一终止密码(147位)才 终止,α链延长为146个氨基酸。 3.密码子的缺失和嵌入 己发现有一些异常血红蛋白缺失或嵌入 部分氨基酸。这是由于在细胞减数分裂时,同源染色体发生错配和不 等交换,导致编码密码子的DNA三联碱基缺失或嵌入。 4.无义突变 无义突变是指突变使正常密码子变为终止密码子, 因此蛋白质链的合成便提前终止,导致地中海贫血。例如Hb Mckees-Rock,其α链正常,β链缩短为144个氨基酸。原因是β珠蛋 白基因第154位酪氨酸密码子TAT突变成终止密码子TAA(T→A), 对应的mRNA变化为UAU→UAA,使肽链合成提前终止

5.终止密码子突变由于编码终止密码子(UAA、UAG或UGA) 的DNA序列发生突变,珠蛋白链的合成就不在正常的位置上终止,而 继续合成至新的终止密码子,因此生成了延长的异常珠蛋白链。例如 Hb Constant Spring是由于α珠蛋白基因第142位终止密码子TAA变为 谷氨酰胺密码子CAA(T→C),对应的mRNA变化为UAA→CAA,结 果α链合成完141个氨基酸时并不停止,而是继续合成到下一个终止密 码子(173位)才终止,使α链延长为172个氨基酸。该突变基因转录 的mRNA不稳定,易降解,导致α链合成减少,从而引发一种典型的 非缺失型a地中海贫血 6.基因缺失由于缺失的基因及部位不同,导致不同的珠蛋白肽 链合成异常和不同类型的地中海贫血 7.融合基因融合突变的实质是两种不同基因局部片段的拼接。 这种由两种不同基因局部片段拼接而成的DNA片段称为融合基因,它 们可编码融合蛋白。例如 Hb Lepore,其α链结构正常,但非α链是由 δ和β链连接而成,其N端象δ链,C端象β链,称δ-β链。与此相 反,另一种融合链的异常血红蛋白 Hb anti-Lepore,其N端象β链,C端 象δ链,称为β-δ链。这是由于染色体的错误联合和不等交换,形成 了融合基因δ-β和β-8,合成了融合链的异常血红蛋白。B和δ基因 的融合意味着β基因的减缺,合成β链减少,表现为β地中海贫血的 临床症状。 (三)常见的血红蛋白病 镰状细胞贫血镰状细胞贫血( sickle cell anemia, OMIM#603903)是因β珠蛋白基因缺陷所引起的一种疾病,呈常染色 体隐性遗传。患者β珠蛋白基因的第6位密码子由正常的GAG突变为 GTG(A→T),使其编码的β珠蛋白N端第6位氨基酸由正常的谷氨酸 变成了缬氨酸,形成HbS。这种血红蛋白分子表面电荷改变,出现 个疏水区域,导致溶解度下降。在氧分压低的毛细血管中,溶解度低 的HbS聚合形成凝胶化的棒状结构,使红细胞变成镰刀状。镰变细胞 引起血粘性增加,易使微细血管栓塞,造成散发性的组织局部缺氧, 甚至坏死,产生肌肉骨骼痛、腹痛等痛性危象。同时镰状细胞的变形

5.终止密码子突变 由于编码终止密码子(UAA、UAG或UGA) 的DNA序列发生突变,珠蛋白链的合成就不在正常的位置上终止,而 继续合成至新的终止密码子,因此生成了延长的异常珠蛋白链。例如 Hb Constant Spring是由于α珠蛋白基因第142位终止密码子TAA变为 谷氨酰胺密码子CAA(T→C),对应的mRNA变化为UAA→CAA,结 果α链合成完141个氨基酸时并不停止,而是继续合成到下一个终止密 码子(173位)才终止,使α链延长为172个氨基酸。该突变基因转录 的mRNA不稳定,易降解,导致α链合成减少,从而引发一种典型的 非缺失型α地中海贫血。 6.基因缺失 由于缺失的基因及部位不同,导致不同的珠蛋白肽 链合成异常和不同类型的地中海贫血。 7.融合基因 融合突变的实质是两种不同基因局部片段的拼接。 这种由两种不同基因局部片段拼接而成的DNA片段称为融合基因,它 们可编码融合蛋白。例如Hb Lepore,其α链结构正常,但非α链是由 δ和β链连接而成,其N端象δ链,C端象β链,称δ-β链。与此相 反,另一种融合链的异常血红蛋白Hb anti-Lepore,其N端象β链,C端 象δ链,称为β-δ链。这是由于染色体的错误联合和不等交换,形成 了融合基因δ-β和β-δ,合成了融合链的异常血红蛋白。β和δ基因 的融合意味着β基因的减缺,合成β链减少,表现为β地中海贫血的 临床症状。 (三)常见的血红蛋白病 1 .镰状 细 胞贫 血 镰状 细 胞贫 血(sick1e cel1 anemia , OMIM#603903)是因β珠蛋白基因缺陷所引起的一种疾病,呈常染色 体隐性遗传。患者β珠蛋白基因的第6位密码子由正常的GAG突变为 GTG(A→T),使其编码的β珠蛋白N端第6位氨基酸由正常的谷氨酸 变成了缬氨酸,形成HbS。这种血红蛋白分子表面电荷改变,出现一 个疏水区域,导致溶解度下降。在氧分压低的毛细血管中,溶解度低 的HbS聚合形成凝胶化的棒状结构,使红细胞变成镰刀状。镰变细胞 引起血粘性增加,易使微细血管栓塞,造成散发性的组织局部缺氧, 甚至坏死,产生肌肉骨骼痛、腹痛等痛性危象。同时镰状细胞的变形

能力降低,通过狭窄的毛细血管时,不易变形通过,挤压时易破裂, 导致溶血性贫血(图11-4)。杂合子(HbA/HbS)不表现临床症状, 但在氧分压低时可引起部分细胞镰变。 囻14镰状细胞贫血的发病机制 本病主要分布在非洲,也散发于地中海地区,在东非某些地区HbS 基因频率高达40%,因此镰状细胞贫血已成为世界范围内最严重的血 红蛋白病。应用分子诊断技术可以对镰状细胞贫血进行基因诊断(图 11-5) 图1-5镰状细胞贫血的基因诊断 2.血红蛋白M病即高铁血红蛋白症。正常血红蛋白(HbA)血 红素中的铁原子与珠蛋白链上特定的组氨酸连接(α87His,β92His) 和作用(a58His,β63His),保证二价铁离子(Fe2+)的稳定,以便 结合氧。血红蛋白M(HbM)患者的珠蛋白基因中,由于上述某个氨 基酸的密码子发生碱基置换,使珠蛋白链与铁原子连接或作用的有关 氨基酸发生替代,导致部分血红素的二价铁离子(Fe2+)变成高价铁离 子(Fe3),形成高铁血红蛋白( methemoglobin),影响携氧能力, 使组织细胞供氧不足,产生紫钳症状。血红蛋白M病呈常染色体显性 遗传,杂合子HbM的含量通常在30%以内,可出现紫钳症状。 3.地中海贫血患者由于某种或某些珠蛋白链合成速率降低,造 成一些肽链缺乏,另一些肽链相对过多,出现肽链数量的不平衡,导 致溶血性贫血,称为地中海贫血( thalassemia)。按照合成速率降低 的珠蛋白链类型,可以把地中海贫血区分为多种不同的类型:α珠蛋 白链合成减缺的称为a地中海贫血,β链合成减缺的称为β地中海贫 血,Y链合成减缺的称为γ地中海贫血,δ和β链合成减缺的称为δβ 地中海贫血,以此类推。 (1)α地中海贫血(α- thalassemia)主要分布在热带和亚热带地

能力降低,通过狭窄的毛细血管时,不易变形通过,挤压时易破裂, 导致溶血性贫血(图11-4)。杂合子(HbA/HbS)不表现临床症状, 但在氧分压低时可引起部分细胞镰变。 图11-4 镰状细胞贫血的发病机制 本病主要分布在非洲,也散发于地中海地区,在东非某些地区HbS 基因频率高达40%,因此镰状细胞贫血已成为世界范围内最严重的血 红蛋白病。应用分子诊断技术可以对镰状细胞贫血进行基因诊断(图 11-5)。 图11-5 镰状细胞贫血的基因诊断 2.血红蛋白M病 即高铁血红蛋白症。正常血红蛋白(HbA)血 红素中的铁原子与珠蛋白链上特定的组氨酸连接(α87His,β92His) 和作用(α58His,β63His),保证二价铁离子(Fe2+)的稳定,以便 结合氧。血红蛋白M(HbM)患者的珠蛋白基因中,由于上述某个氨 基酸的密码子发生碱基置换,使珠蛋白链与铁原子连接或作用的有关 氨基酸发生替代,导致部分血红素的二价铁离子(Fe2+)变成高价铁离 子(Fe3+),形成高铁血红蛋白(methemoglobin),影响携氧能力, 使组织细胞供氧不足,产生紫钳症状。血红蛋白M病呈常染色体显性 遗传,杂合子HbM的含量通常在30%以内,可出现紫钳症状。 3.地中海贫血 患者由于某种或某些珠蛋白链合成速率降低,造 成一些肽链缺乏,另一些肽链相对过多,出现肽链数量的不平衡,导 致溶血性贫血,称为地中海贫血(tha1assemia)。按照合成速率降低 的珠蛋白链类型,可以把地中海贫血区分为多种不同的类型:α珠蛋 白链合成减缺的称为α地中海贫血,β链合成减缺的称为β地中海贫 血,γ链合成减缺的称为γ地中海贫血,δ和β链合成减缺的称为δβ 地中海贫血,以此类推。 (1)α地中海贫血(α-thalassemia)主要分布在热带和亚热带地

区。该病在我国也相当常见,尤其在南方,发病率很高。因此,α地 中海贫血已成为一个较严重的公共健康问题。根据临床表现,本病可 分成不同的类型。不同类型的α地中海贫血患者,体内缺失(或缺陷) 的α珠蛋白基因数目各不相同,缺失的α基因越多,病情越严重。常 见的a地中海贫血有以下几种 ① Hb bart's胎儿水肿综合征:发病于胎儿期,基因型为α0地中海 贫血基因纯合子(--),4个α珠蛋白基因全部缺失。由于不能合成 a链,y链便聚合为γ四聚体(y4)。y4首先发现于 St Bartholomew 医院,故命名为 Hb bart's。这种胎儿全身水肿,肝脾肿大,四肢短小, 腹部因有腹水而隆起,故名 Hb bart's胎儿水肿综合征。 Hb bart's(γ4) 具有很高的氧亲合力,在氧分压低的组织中,不易释放出氧,造成组 织缺氧,故 Hb bart's水肿胎儿多于妊娠30~40周时死亡或早产后半小 时内死亡。如果胎儿父母为α0地中海贫血基因杂合子(-/aa)或 己生育过一胎 Hb bart’s水肿胎儿者,在妊娠中期孕妇有妊娠高血压和 严重水肿,B超检查见胎儿异常,常提示为本病胎儿。 ②HbH病:患者为α地中海贫血基因和a+地中海贫血基因的双重 杂合子,基因型为(--/-a)。由于4个a珠蛋白基因中有3个缺失或 缺陷,使α链的合成受到严重影响,大量的β珠蛋白链过剩而聚合为 β四聚体HbH(β4)。HbH的氧亲合力为HbA的10倍,在正常的生理 条件下不易释放出氧。更为重要的是HbH是一种不稳定的四聚体,其 β链上的巯基(-SH)易被氧化,导致β4的解体,生成游离的β4链 游离β链不能稳定地存在于红细胞内,结果沉淀聚积,形成H包涵体 附着于红细胞膜上,使红细胞膜受损,红细胞失去柔韧性,易被脾脏 破坏,导致慢性溶血性贫血。HbH病患儿在出生时几乎无明显的症状, 只有轻度贫血,但 Hb bart's的相对含量可高达25%。在发育过程中Hb Bart's逐渐被HbH替代,至1周岁左右便出现HbH病的临床症状 ③标准型α地中海贫血:患者为a0地中海贫血基因的杂合子,基 因型为(--/aa);或是α+地中海贫血基因的纯合子,基因型为( α/α),均缺失2个α基因。前一种类型在我国较多见,基因分析可 呈现出东南亚型α珠蛋白基因缺失,后一种类型多见于黑人。由于能

区。该病在我国也相当常见,尤其在南方,发病率很高。因此,α地 中海贫血已成为一个较严重的公共健康问题。根据临床表现,本病可 分成不同的类型。不同类型的α地中海贫血患者,体内缺失(或缺陷) 的α珠蛋白基因数目各不相同,缺失的α基因越多,病情越严重。常 见的α地中海贫血有以下几种: ①Hb Bart’s胎儿水肿综合征:发病于胎儿期,基因型为α0地中海 贫血基因纯合子(--/--),4个α珠蛋白基因全部缺失。由于不能合成 α链,γ链便聚合为γ四聚体(γ4)。γ4首先发现于St Bartholomew 医院,故命名为Hb Bart’s。这种胎儿全身水肿,肝脾肿大,四肢短小, 腹部因有腹水而隆起,故名Hb Bart’s胎儿水肿综合征。Hb Bart’s(γ4) 具有很高的氧亲合力,在氧分压低的组织中,不易释放出氧,造成组 织缺氧,故Hb Bart’s水肿胎儿多于妊娠30~40周时死亡或早产后半小 时内死亡。如果胎儿父母为α0地中海贫血基因杂合子(--/αα)或 己生育过一胎Hb Bart’s水肿胎儿者,在妊娠中期孕妇有妊娠高血压和 严重水肿,B超检查见胎儿异常,常提示为本病胎儿。 ②HbH病:患者为α0地中海贫血基因和α+地中海贫血基因的双重 杂合子,基因型为(--/-α)。由于4个α珠蛋白基因中有3个缺失或 缺陷,使α链的合成受到严重影响,大量的β珠蛋白链过剩而聚合为 β四聚体Hb H(β4)。HbH的氧亲合力为Hb A的10倍,在正常的生理 条件下不易释放出氧。更为重要的是Hb H是一种不稳定的四聚体,其 β链上的巯基(-SH)易被氧化,导致β4的解体,生成游离的β4链。 游离β链不能稳定地存在于红细胞内,结果沉淀聚积,形成H包涵体, 附着于红细胞膜上,使红细胞膜受损,红细胞失去柔韧性,易被脾脏 破坏,导致慢性溶血性贫血。HbH病患儿在出生时几乎无明显的症状, 只有轻度贫血,但Hb Bart’s的相对含量可高达25%。在发育过程中Hb Bart’s逐渐被HbH替代,至1周岁左右便出现HbH病的临床症状。 ③标准型α地中海贫血:患者为α0地中海贫血基因的杂合子,基 因型为(--/αα);或是α+地中海贫血基因的纯合子,基因型为(- α/-α),均缺失2个α基因。前一种类型在我国较多见,基因分析可 呈现出东南亚型α珠蛋白基因缺失,后一种类型多见于黑人。由于能

合成相当量的α珠蛋白链,所以仅表现出轻度溶血性贫血或无症状 ④静止型a地中海贫血:该类型为α+地中海贫血基因的杂合子 基因型为(-a/aa),缺失1个a基因。由于只有一个基因缺失或 突变,故临床上无症状,仅在出生时血液中含有1%~2%的 Hb bart's, 可以通过血红蛋白电泳检出。 (2)β地中海贫血(β- tha l assemia)是一组以血红蛋白β珠蛋 白肽链(β链)合成减少(β+)或缺失(β0)为特征的遗传性血液病。 该病在世界范围内广为流行,全世界至少有1.5亿人携带β地中海贫血 基因。β地中海贫血好发于地中海沿岸国家和地区,如意大利、希腊 马耳他、塞浦路斯等,以及东南亚各国的广大地区。临床上根据患者 溶血性贫血的严重程度,将β地中海贫血分为重型、中间型和轻型三 种类型。 ①重型β地中海贫血:患者可能是β0/β0、、β+/β+或δB0 /δβ0(δβ0为融合基因)等纯合子,也可能是β0和β+地中海贫血 基因的双重杂合子(B0/B+)。其共同特点是患者不能合成β链,或 合成量很少,结果α链过剩而沉降到红细胞膜上,引起膜的性能改变, 发生严重的溶血反应,同时它们可与代偿性表达的y链组合成HbF(a 2Y2)。患儿出生后几个月便可出现溶血反应。由于组织缺氧,促进红 细胞生成素分泌,刺激骨髓増生,骨质受损变得疏松,可岀现鼻塌眼 肿、上颔前突、头大额隆等特殊的“地中海贫血面容” ②中间型β地中海贫血:一般是β+地中海贫血基因的纯合子,患 者的基因型通常为β+(高F)/β+(高F)或β+/6B+。前者为β地 中海贫血变异型的纯合子,伴有HbF(a2y2)的明显升高。后者为 两种不同变异型地中海贫血的双重杂合子。病人的症状介于重型和轻 型之间,故称为中间型。 ③轻型β地中海贫血:发生于β°或β+地中海贫血基因的杂合子, 无任何临床症状,需通过实验室检査才能确诊。患者主要是β+/βA B0/βA或β0/δBA等杂合子,都带有1个正常的β基因BA,所以可 以合成相当量的β珠蛋白链。患者的HbA2(a282)和HbF(a2y2) 可代偿性增高

合成相当量的α珠蛋白链,所以仅表现出轻度溶血性贫血或无症状。 ④静止型α地中海贫血:该类型为α+地中海贫血基因的杂合子, 基因型为(-α/αα),缺失1个α基因。由于只有一个基因缺失或 突变,故临床上无症状,仅在出生时血液中含有l%~2%的Hb Bart’s, 可以通过血红蛋白电泳检出。 (2)β地中海贫血(β-tha1assemia)是一组以血红蛋白β珠蛋 白肽链(β链)合成减少(β+)或缺失(β0)为特征的遗传性血液病。 该病在世界范围内广为流行,全世界至少有1.5亿人携带β地中海贫血 基因。β地中海贫血好发于地中海沿岸国家和地区,如意大利、希腊、 马耳他、塞浦路斯等,以及东南亚各国的广大地区。临床上根据患者 溶血性贫血的严重程度,将β地中海贫血分为重型、中间型和轻型三 种类型。 ①重型β地中海贫血:患者可能是β0/β0、、β+/β+或δβ0 /δβ0(δβ0为融合基因)等纯合子,也可能是β0和β+地中海贫血 基因的双重杂合子(β0/β+)。其共同特点是患者不能合成β链,或 合成量很少,结果α链过剩而沉降到红细胞膜上,引起膜的性能改变, 发生严重的溶血反应,同时它们可与代偿性表达的γ链组合成Hb F(α 2γ2)。患儿出生后几个月便可出现溶血反应。由于组织缺氧,促进红 细胞生成素分泌,刺激骨髓增生,骨质受损变得疏松,可出现鼻塌眼 肿、上颔前突、头大额隆等特殊的“地中海贫血面容”。 ②中间型β地中海贫血:一般是β+地中海贫血基因的纯合子,患 者的基因型通常为β+(高F)/β+(高F)或β+/δβ+。前者为β地 中海贫血变异型的纯合子,伴有Hb F(α2 γ2)的明显升高。后者为 两种不同变异型地中海贫血的双重杂合子。病人的症状介于重型和轻 型之间,故称为中间型。 ③轻型β地中海贫血:发生于β0或β+地中海贫血基因的杂合子, 无任何临床症状,需通过实验室检查才能确诊。患者主要是β+/βA、 β0/βA或β0/δβA等杂合子,都带有1个正常的β基因βA,所以可 以合成相当量的β珠蛋白链。患者的HbA2(α2δ2)和HbF(α2γ2) 可代偿性增高

大量研究资料表明,β地中海贫血除极少数是由于基因缺失引起 以外,绝大多数是由于β珠蛋白基因不同类型的点突变(包括单个碱 基的取代,个别碱基的插入或缺失)所致。这些点突变分别导致转录 受阻,mRNA前体剪接加工错误,翻译无效,或合成不稳定的珠蛋白 链而阻碍α-β二聚体形成,使珠蛋白链不平衡等 、血浆蛋白病 血浆蛋白病( plasma protein disease)是血浆蛋白遗传性缺陷所引 起的一组疾病。在血浆蛋白病中以血友病较常见。血友病( hemophilia) 是一类遗传性凝血功能障碍的出血性疾病,包括血友病A(即血友病 甲,又称凝血因子Ⅷ缺乏症,即传统所称的血友病)。血友病B(即血 友病乙,又称凝血因子Ⅸ缺乏症、PTC缺乏症)及血友病C(即血友病 丙,又称凝血因子Ⅺ缺乏症、PTA缺乏症)。 (一)血友病A 血友病A( hemophilia A Omim#306700)是血浆中凝血因子Ⅷ(F Ⅷ)缺乏所致X连锁遗传的凝血缺陷疾病。男性发生率较高(1/6000), 约占血友病总数的85%, 血友病A在临床上主要表现为反复自发性或轻微损伤后出血不止 和出血引起的压迫症状和并发症;一般多为缓慢持续性出血,大出血 罕见。出血部位广泛,体表和体内任何部分均可出血,可累积皮肤、 粘膜、肌肉或器官等,关节多次出血可导致关节变形,颅内出血可导 致死亡。 研究表明,凝血因子Ⅷ是一个复合分子,由3种成分构成,①抗血 友病球蛋白(ⅧAHG);②Ⅷ因子相关抗原(ⅧAgn);③促血小板 粘附血管因子(ⅧVwF)。血友病A是因ⅧAHG遗传性缺乏所致。F Ⅷ基因位于Xq28,长约186kb,几乎占X染色体的01%,由26个外显子 和25个内含子组成 (二)血友病B 这是凝血因子Ⅸ缺乏或其凝血功能降低而导致的出血性疾病。其

大量研究资料表明,β地中海贫血除极少数是由于基因缺失引起 以外,绝大多数是由于β珠蛋白基因不同类型的点突变(包括单个碱 基的取代,个别碱基的插入或缺失)所致。这些点突变分别导致转录 受阻,mRNA前体剪接加工错误,翻译无效,或合成不稳定的珠蛋白 链而阻碍α-β二聚体形成,使珠蛋白链不平衡等。 二、血浆蛋白病 血浆蛋白病(plasma protein disease)是血浆蛋白遗传性缺陷所引 起的一组疾病。在血浆蛋白病中以血友病较常见。血友病(hemophilia) 是一类遗传性凝血功能障碍的出血性疾病,包括血友病A(即血友病 甲,又称凝血因子Ⅷ缺乏症,即传统所称的血友病)。血友病B(即血 友病乙,又称凝血因子Ⅸ缺乏症、PTC缺乏症)及血友病C(即血友病 丙,又称凝血因子Ⅺ缺乏症、PTA缺乏症)。 (一)血友病A 血友病A(hemophilia A OMIM #306700)是血浆中凝血因子Ⅷ(F Ⅷ)缺乏所致X连锁遗传的凝血缺陷疾病。男性发生率较高(1/6000), 约占血友病总数的85%, 血友病A在临床上主要表现为反复自发性或轻微损伤后出血不止 和出血引起的压迫症状和并发症;一般多为缓慢持续性出血,大出血 罕见。出血部位广泛,体表和体内任何部分均可出血,可累积皮肤、 粘膜、肌肉或器官等,关节多次出血可导致关节变形,颅内出血可导 致死亡。 研究表明,凝血因子Ⅷ是一个复合分子,由3种成分构成,①抗血 友病球蛋白(ⅧAHG);②Ⅷ因子相关抗原(ⅧAgn);③促血小板 粘附血管因子(ⅧVWF)。血友病A是因ⅧAHG遗传性缺乏所致。F Ⅷ基因位于Xq28,长约186kb,几乎占X染色体的0.1%,由26个外显子 和25个内含子组成。 (二)血友病B 这是凝血因子Ⅸ缺乏或其凝血功能降低而导致的出血性疾病。其

临床症状与血友病A基本相同。血友病B发生率为110万~1.5/10万,占 血友病类疾病总数的15%~20%。本病的分子病因是位于X染色体上的 FⅨ基因突变所致,故该病的遗传方式与血友病A相同,呈X连锁隐性 遗传 人类FⅨ基因定位于Xq271-q272,全长35kb,由8个外显子和7个 内含子构成。完整的人FⅨX基因的cDNA长度为2802bp,编码序列的长 度为1383bp,应用各种限制酶和FⅨ基因探针进行DNA分析,可以对血 友病B进行基因诊断。 (三)血友病C 血友病C是血浆第Ⅺ凝血因子缺乏引起的凝血障碍疾病,遗传方式 为常染色体隐性遗传,基因定位于15q11。本病症状较血友病A和血友 病B轻。 (四)血管性假性血友病 血管性假性血友病也称 von willebrand病。是一种与Ⅷ凝血因子有 关的遗传性凝血障碍。本病的发生主要是由于血浆中的一种大分子量 的糖蛋白 von willebrand因子(vWF)缺乏。vWF基因定位于12 pter -p12, 长度为180kb。WF由血管内皮细胞分泌,为Ⅷ凝血因子的载体,并可 增强Ⅷ因子的稳定性。wwF缺乏会降低Ⅷ凝血因子的活性;同时由于 血小板中也含有vwF,vWF缺乏也影响血小板的凝血功能。因此本病 患者有明显的出血倾向,但症状较轻。 、结构蛋白缺陷病 构成细胞的基本结构和骨架的蛋白的遗传性缺陷可导致一类结构 蛋白缺陷病。这类分子病包括胶原蛋白病、肌营养不良症等。 (一)胶原蛋白病 胶原( collagen)约占人体蛋白质总量的20%以上,在不同的组织 中分别由成纤维细胞、平滑肌细胞、成骨细胞、软骨细胞和某些上皮 细胞合成分泌。胶原蛋白分子由三条相同或不同的q多肽链(a1、a 2、α3)组成。α链的氨基酸残基约有1000个,特点是甘氨酸、脯氨酸

临床症状与血友病A基本相同。血友病B发生率为1/10万~1.5/10万,占 血友病类疾病总数的15%~20%。本病的分子病因是位于X染色体上的 FⅨ基因突变所致,故该病的遗传方式与血友病A相同,呈X连锁隐性 遗传。 人类FⅨ基因定位于Xq27.1-q27.2,全长35kb,由8个外显子和7个 内含子构成。完整的人FⅨ基因的cDNA长度为2802bp,编码序列的长 度为1383bp,应用各种限制酶和FⅨ基因探针进行DNA分析,可以对血 友病B进行基因诊断。 (三)血友病C 血友病C是血浆第Ⅺ凝血因子缺乏引起的凝血障碍疾病,遗传方式 为常染色体隐性遗传,基因定位于15q11。本病症状较血友病A和血友 病B轻。 (四)血管性假性血友病 血管性假性血友病也称von Willebrand病。是一种与Ⅷ凝血因子有 关的遗传性凝血障碍。本病的发生主要是由于血浆中的一种大分子量 的糖蛋白von Willebrand因子(vWF)缺乏。vWF基因定位于12pter-p12, 长度为180kb。vWF由血管内皮细胞分泌,为Ⅷ凝血因子的载体,并可 增强Ⅷ因子的稳定性。vWF缺乏会降低Ⅷ凝血因子的活性;同时由于 血小板中也含有vWF,vWF缺乏也影响血小板的凝血功能。因此本病 患者有明显的出血倾向,但症状较轻。 三、结构蛋白缺陷病 构成细胞的基本结构和骨架的蛋白的遗传性缺陷可导致一类结构 蛋白缺陷病。这类分子病包括胶原蛋白病、肌营养不良症等。 (一)胶原蛋白病 胶原(collagen)约占人体蛋白质总量的20%以上,在不同的组织 中分别由成纤维细胞、平滑肌细胞、成骨细胞、软骨细胞和某些上皮 细胞合成分泌。胶原蛋白分子由三条相同或不同的α多肽链(α1、α 2、α3)组成。α链的氨基酸残基约有1000个,特点是甘氨酸、脯氨酸

共24页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档