复旦大学:《离散数学》PPT教学课件(赵一鸣)01/28

Discrete mathematics Discrete ie no continuous Set theory, Combinatorics, Graphs, Modern Algebra(Abstract algebra, Algebraic structures), Logic, classic probability, number theory, Automata and Formal Languages, Computability and decidability etc
Discrete mathematics Discrete i.e. no continuous Set theory, Combinatorics, Graphs, Modern Algebra(Abstract algebra, Algebraic structures), Logic, classic probability, number theory, Automata and Formal Languages, Computability and decidability etc

Before the 18th century, Discrete, quantity and space astronomy, physics Example: planetary orbital, Newton 's laws in Three Dimensions continuous mathematics: calculus Equations of Mathematical Physics, Functions of Real Variable Functions of complex variable Discrete ? stagnancy
Before the 18th century, Discrete, quantity and space astronomy, physics Example: planetary orbital, Newton's Laws in Three Dimensions continuous mathematics: calculus, Equations of Mathematical Physics, Functions of Real Variable,Functions of complex Variable Discrete ? stagnancy

in the thirties of the twentieth century Turing Machines Finite Discrete Data Structures and Algorithm Design Database Compilers Design and Analysis of Algorithms Computer Networks Software information security and cryptography the theory of computation New generation computers
in the thirties of the twentieth century, Turing Machines Finite Discrete Data Structures and Algorithm Design Database Compilers Design and Analysis of Algorithms Computer Networks Software information security and cryptography the theory of computation New generation computers

Set theory Introductory Combinatorics, Graphs, Algebtaic structures, ogIc This term: Set theory, Introductory Combinatorics Graphs, Algebtaic structures(Group, Ring, Field) Next term: Algebtaic structures(Lattices and Boolean Algebras) ogIc
Set theory, Introductory Combinatorics, Graphs, Algebtaic structures, Logic. This term: Set theory, Introductory Combinatorics , Graphs, Algebtaic structures(Group,Ring,Field). Next term: Algebtaic structures(Lattices and Boolean Algebras), Logic

每周三交作业,作业成绩占总成绩的15%; 平时不定期的进行小测验,占总成绩的 15 期中考试成绩占总成绩的20%;期终考试成绩 占总成绩的50% zhym@fudanedu.cn 张宓13212010027 fudan,edu,cn BBS id: abchjsabc软件楼1039 杨侃10302010007 fudan edu. cn
每周三交作业,作业成绩占总成绩的15%; 平时不定期的进行小测验,占总成绩的 15%; 期中考试成绩占总成绩的20%;期终考试成绩 占总成绩的50% zhym@fudan.edu.cn 张宓 13212010027@fudan.edu.cn BBS id:abchjsabc 软件楼1039 杨侃 10302010007@fudan.edu.cn

1离散数学及其应用(英文版) 作者: Kenneth H. rosen著出版社:机械工业出 版社 2组合数学(英文版)经典原版书库 作者:(美)布鲁迪( Brualdi,R.A.)著出版社: 机械工业出版社 3离散数学暨组合数学(英文影印版) Discrete Mathematics with Combinatorics James A Anderson, University of South Carolina, Spartanburg 大学计算机教育国外著名教材系列(影印 版)清华大学出版社
1.离散数学及其应用(英文版) 作者:Kenneth H.Rosen 著出版社:机械工业出 版社 2.组合数学(英文版)——经典原版书库 作者:(美)布鲁迪(Brualdi,R.A.) 著出版社: 机械工业出版社 3.离散数学暨组合数学(英文影印版) Discrete Mathematics with Combinatorics James A.Anderson,University of South Carolina,Spartanburg 大学计算机教育国外著名教材系列(影印 版) 清华大学出版社

I Introduction to Set Theory The objects of study of Set Theory are sets. As sets are fundamental objects that can be used to define all other concepts in mathematics. Georg Cantor(1845--1918) is a German mathematician Cantor's 1874 paper, On a Characteristic Property of All Real Algebraic Numbers marks the birth of set theory. paradox
ⅠIntroduction to Set Theory The objects of study of Set Theory are sets. As sets are fundamental objects that can be used to define all other concepts in mathematics. Georg Cantor(1845--1918) is a German mathematician. Cantor's 1874 paper, "On a Characteristic Property of All Real Algebraic Numbers", marks the birth of set theory. paradox

twentieth century axiomatic set theory naive set theory Concept Relation. function. cardinal number paradox
twentieth century axiomatic set theory naive set theory Concept Relation,function,cardinal number paradox

Chapter 1 Basic Concepts of Sets 1.1 Sets and subsets What are sets? A collection of different objects is called a set SA The individual objects in this collection are called the elements of the set We write“teA” to say that t is an element ofa, and we write“tgA” to say that t is not an element ofA
Chapter 1 Basic Concepts of Sets 1.1 Sets and Subsets What are Sets? A collection of different objects is called a set S,A The individual objects in this collection are called the elements of the set We write “tA” to say that t is an element of A, and We write “tA” to say that t is not an element of A

Example: The set of all integers, Z Then3∈Z,-8∈Z,6.5gZ These sets, each denoted using a boldface letter, play an important role in discrete mathematics: N=0, 1, 2,, the set of natural number FF(,2, -1, 0, 1, 2 ., the set of integers F=Z=1, 2, ., the set of positive integers Z=1, -2,, the set of negative integers Q={p/qlp∈Z2q∈Z,q≠0}, the set of rational numbers Q, the set of positive rational numbers Q, the set of negative rational numbers
Example:The set of all integers, Z. Then 3Z, -8Z, 6.5Z These sets, each denoted using a boldface letter, play an important role in discrete mathematics: N={0,1,2,…}, the set of natural number I=Z={…,-2,-1,0,1,2,…}, the set of integers I +=Z+={1,2,…}, the set of positive integers I -=Z-={-1,-2,…}, the set of negative integers Q={p/q|pZ,qZ,q0}, the set of rational numbers Q+ , the set of positive rational numbers Q- , the set of negative rational numbers
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学》课程教学讲义(图论)第十一章 连通度、网络、匹配.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)图论习题——考研习题与经典习题.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)图论应用、图论算法.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)超图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)第十章 树(主讲:吴永辉).pdf
- 复旦大学:《离散数学》课程教学讲义(图论)第九章 平面图与图的着色.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)第八章 图的基本概念.pdf
- 复旦大学:《离散数学——组合数学》电子讲义_第七章 生成函数与递推(吴永辉).pdf
- 复旦大学:《离散数学——组合数学》电子讲义_第六章 排列与组合(吴永辉).pdf
- 复旦大学:《离散数学——组合数学》电子讲义_绪论、第五章 鸽笼原理(吴永辉).pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)03 函数(主讲:王智慧).pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)02 二元关系.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)01 集合代数.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)集合论习题解析——经典习题与考研习题.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第三章 函数.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第三章 函数.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第二章 关系(主讲:吴永辉).pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)绪论、第一章 集合的基本概念.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_15 Application and Limitations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_14 Soundness and Completeness of Predicate Logic.pdf
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)02/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)03/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)04/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)05/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)06/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)07/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)08/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)09/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)10/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)11/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)12/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)13/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)14/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)15/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)16/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)17/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)18/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)19/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)20/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)21/28.ppt