上海交通大学:自然语言处理(PPT课件讲稿)Natural Language Processing

Natural language processing (8) Zhao hai赵海 Department of Computer Science and Engineering Shang hai Jiao Tong University 2010-2011 zhaohaidcs. situ. edu. cn
1 Natural Language Processing (8) Zhao Hai 赵海 Department of Computer Science and Engineering Shanghai Jiao Tong University 2010-2011 zhaohai@cs.sjtu.edu.cn

Overview Models HMM: Hidden markov model maximum entropy markov model CRES: Conditional random fields Tasks Chinese word segmentation part-of-speech tagging named entity recognition
2 Overview • Models – HMM: Hidden Markov Model – maximum entropy Markov model – CRFs: Conditional Random Fields • Tasks – Chinese word segmentation – part-of-speech tagging – named entity recognition

What is an hmm? Graphical model Circles indicate states Arrows indicate probabilistic dependencies between states
3 What is an HMM? • Graphical Model • Circles indicate states • Arrows indicate probabilistic dependencies between states

What is an hmm? Green circles are hidden states Dependent only on the previous state The past is independent of the future given the present
4 What is an HMM? • Green circles are hidden states • Dependent only on the previous state • “The past is independent of the future given the present

What is an hmm? Purple nodes are observed states Dependent only on their corresponding hidden state
5 What is an HMM? • Purple nodes are observed states • Dependent only on their corresponding hidden state

HMM Formalism K K S,K,∏,A,B S:S.SN are the values for the hidden states K: kI.kM are the values for the observations
6 HMM Formalism • {S, K, P, A, B} • S : {s1…sN } are the values for the hidden states • K : {k1…kM } are the values for the observations S S S K K K S K S K

HMM Formalism B K K S,K,∏,A,B ∏={π} are the initial state probabilities A=(ai are the state transition probabilities B=bik are the observation state probabilities
7 HMM Formalism • {S, K, P, A, B} • P = {pi} are the initial state probabilities • A = {aij} are the state transition probabilities • B = {bik} are the observation state probabilities A B A A A B B S S S K K K S K S K

Inference in an hmm Probability Estimation: Compute the probability of a given observation sequence Decoding: Given an observation sequence compute the most likely hidden state sequence Parameter Estimation: Given an observation sequence find a model that most closely fits the observation
8 Inference in an HMM • Probability Estimation: Compute the probability of a given observation sequence • Decoding: Given an observation sequence, compute the most likely hidden state sequence • Parameter Estimation: Given an observation sequence, find a model that most closely fits the observation

Probability estimation Given an observation sequence and a model compute the probability of the observation sequence O=(01….On),=(A,B,) Compute P(Olu
9 Compute ( | ) ( ... ), ( , , ) 1 P O O = o oT = A B P o1 ot-1 ot ot+1 oT Given an observation sequence and a model, compute the probability of the observation sequence Probability Estimation

Probability estimation P(O|x,p)=ba0b2…ba
10 Probability Estimation T oT P O X bx o bx o bx ( | , ) ... 1 1 2 2 = o1 ot-1 ot ot+1 oT x1 xt-1 xt xt+1 xT
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 演化计算(PPT讲稿)Evolutionary Computation(EC).ppt
- 《计算机组成原理》课程电子教案(PPT课件讲稿)第4章 指令系统.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第五章 运输层.ppt
- C++ Basics(PPT讲稿).ppt
- 河南中医药大学(河南中医学院):《计算机文化》课程教学资源(PPT课件讲稿)第五章 运输层.pptx
- 南京航空航天大学:《数据结构》课程教学资源(PPT课件讲稿)第七章 图(微软精品课程建设).ppt
- 香港浸会大学:Programming Interest Group(PPT讲稿)Combinatorics & Number Theory.ppt
- 河南中医药大学(河南中医学院):《计算机网络》课程教学资源(PPT课件讲稿)第二章 物理层.ppt
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 03 The term vocabulary and postings lists.ppt
- A Unified Approach to Route Planning for Shared Mobility.pptx
- 同济大学:《软件测试》课程教学资源(PPT课件讲稿)第6章 功能测试(朱少民).ppt
- 香港理工大学:Introduction to Matlab(PPT讲稿)Image Processing with MATLAB.pptx
- 同济大学:《机器学习》课程教学资源(PPT讲稿)决策树 Decision Tree.pptx
- 河南中医药大学:《网络技术实训》课程教学资源(PPT课件讲稿)网络建设中的关键技术(主讲:路景鑫).pptx
- 微信公众平台开发与应用(PPT讲座,谭海兵).pptx
- 《计算机常用工具软件》教学资源(PPT讲稿)第8章 音频工具.ppt
- 应用层网络(PPT课件讲稿)Application-layer Overlay Networks.ppt
- 中国科学技术大学:《信息论与编码技术》课程教学资源(PPT课件讲稿)第6章 有噪信道编码定理.pptx
- 《单片机原理与应用》课程教学资源(PPT课件讲稿)第2章 MCS-51单片机结构及原理.pptx
- 深圳大学:《编译原理》课程教学资源(PPT课件讲稿,共四章,尹剑飞).ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿,2017)第4章 分布式数据库HBase.ppt
- 《软件工程》课程教学资源(PPT讲稿)软件测试——系统测试.pptx
- 香港浸会大学:《Data Communications and Networking》课程教学资源(PPT讲稿)Chapter 9 High Speed LANs and Wireless LANs.ppt
- Software Reliability & Testing(PPT讲稿)Overview of Software Reliability Engineering.ppt
- 《Java程序开发》课程教学资源(PPT课件讲稿)第11章 Struts2框架技术.ppt
- 北京航空航天大学:《数据挖掘——概念和技术(Data Mining - Concepts and Techniques)》课程教学资源(PPT课件讲稿)Chapter 02 Getting to Know Your Data.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第三章 数据链路层.ppt
- 《信息系统与数据库技术》课程教学资源(PPT课件讲稿)第4章 T-SQL与可编程对象.ppt
- 香港理工大学:数据仓库和数据挖掘(PPT讲稿)Data Warehousing & Data Mining.ppt
- 山西农业大学:大数据技术原理与应用(PPT讲稿)Development and application of bigdata technology.ppt
- Peer-to-Peer Networks:Distributed Algorithms for P2P Distributed Hash Tables.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)Chapter 01 量化设计与分析基础(主讲:周学海).ppt
- 《计算机视觉》课程教学资源(PPT课件讲稿)边缘和线特征提取.ppt
- 厦门大学:《数据库系统原理》课程教学资源(PPT课件讲稿,2016版)第五章 数据库完整性.ppt
- 四川大学:《Linux操作系统》课程教学资源(PPT课件讲稿)第2章 Linux操作系统管理基础.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 树与二叉树(6.1-6.3).ppt
- 《Java语言程序设计》课程教学资源(PPT课件讲稿)第三章 Java面向对象程序设计.ppt
- 香港科技大学:Advanced Topics in Next Generation Wireless Networks.ppt
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 04 Feature extraction and tracking.pptx
- 面向服务的业务流程管理(PPT讲稿)Introduction to Business Process Management(BPM).pptx