演化计算(PPT讲稿)Evolutionary Computation(EC)

Evolutionary Computation (ec) eie426-eC-200809. ppt 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 1 Evolutionary Computation (EC) eie426-ec-200809.ppt

Contents Basic concepts of ec Genetic Algorithms An Example Chromosome Representation Stopping Criteria Initial Population Selection Mechanisms Crossover and mutation Fⅰ itness Functions Another Example Application Routing Optimization Advantages and disadvantages of ec 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 2 Contents ◼ Basic Concepts of EC ◼ Genetic Algorithms ◼ An Example ◼ Chromosome Representation ◼ Stopping Criteria ◼ Initial Population ◼ Selection Mechanisms ◼ Crossover and Mutation ◼ Fitness Functions ◼ Another Example ◼ Application: Routing Optimization ◼ Advantages and Disadvantages of EC

Evolution and search Evolution-search through the enormous genetic parameter space for the best genetic make-up Borrow ideas from nature to help us solve problems that have equally large search spaces or similarly changing environment 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 3 Evolution and Search ◼ Evolution - search through the enormous genetic parameter space for the best genetic make-up. ◼ Borrow ideas from nature to help us solve problems that have equally large search spaces or similarly changing environment

Natural Evolution and Evolutionary Computation Natural Evolutionary Evolution Computing Individual Candidate Solution Fitness Quality Environment Problem 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 4 Natural Evolution and Evolutionary Computation Natural Evolution Individual Fitness Environment Evolutionary Computing Candidate Solution Quality Problem

Different ecs Several classes of EC algorithms have been developed Genetic algorithms(GAs): model genetic evolution Genetic programming: based on GAs, but individuals are programs (represented as trees Evolutionary programming: from the simulation of adaptive behavior in evolution(phenotype evolution Evolution strategies: model the strategic parameters that control variation in evolution i e. the evolution of evolution Culture evolution: models the evolution of culture of a population and how the culture influences the evolution of individuals Co-evolution: individuals evolve through cooperation, or in competition with one other 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 5 Different ECs Several classes of EC algorithms have been developed: - Genetic algorithms (GA’s): model genetic evolution - Genetic programming: based on GA’s, but individuals are programs (represented as trees) - Evolutionary programming: from the simulation of adaptive behavior in evolution (phenotype evolution) - Evolution strategies: model the strategic parameters that control variation in evolution, i.e., the evolution of evolution - Culture evolution: models the evolution of culture of a population and how the culture influences the evolution of individuals. - Co-evolution: individuals evolve through cooperation, or in competition with one other

Basic Concepts Chromosome: individual Population: many individuals Gene: each characteristics of chromosome(one parameter) Allele: the value of a gene Crossover generate offspring by combining parts of the parents Mutation: introduce new genetic material into an existing individual Fitness: the survival strength of an individual Culling (removing)and elitism(copy ing) 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 6 Basic Concepts • Chromosome: individual • Population: many individuals • Gene: each characteristics of chromosome (one parameter) • Allele: the value of a gene • Crossover: generate offspring by combining parts of the parents. • Mutation: introduce new genetic material into an existing individual. • Fitness: the survival strength of an individual • Culling (removing) and elitism (copying)

Evolutionary Computation Selection Parents Recombination Crossover Population Mutation The Replacement evolutionary Offspring cvcle 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 7 Evolutionary Computation Recombination (Crossover) Mutation Population Offspring Parents Selection The Replacement evolutionary cycle

Genetic Algorithms The Ga was the first Ec paradigm developed and applied (Holland 1975 The features of the original Gas (1) A bit string representation 2) Proportional selection (3) Cross-over as the primary method to produce new individuals Several changes have been made: (1) Different representation schemes (2) Different selection methods (3) Different GA operators(cross-over, mutation and elitism) 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 8 Genetic Algorithms ◼ The GA was the first EC paradigm developed and applied (Holland 1975). ◼ The features of the original GA’s: (1) A bit string representation (2) Proportional selection (3) Cross-over as the primary method to produce new individuals. ◼ Several changes have been made: (1) Different representation schemes (2) Different selection methods (3) Different GA operators (cross-over, mutation and elitism)

Random search The Ga is a search procedure Random search is possibly the simplest search procedure. Its training time may be very long before an acceptable solution is obtained Procedure (1) Start from an initial search point or a set of initial points (2) Random perturbations to the points (3)Repeat until an acceptable solution is reached or a maximum number of iterations is exceeded 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 9 Random Search ◼ The GA is a search procedure. ◼ Random search is possibly the simplest search procedure. Its training time may be very long before an acceptable solution is obtained. ◼ Procedure: (1) Start from an initial search point or a set of initial points. (2) Random perturbations to the points (3) Repeat until an acceptable solution is reached or a maximum number of iterations is exceeded

General Genetic Algorithm Let g=0 (2) Initialize the initial generation Cg While no stopping criterion is satisfied (a)Evaluate the fitness of each individual in Cg (b)g<g+1. c)Select parents from Ca-1 (d) Recombine selected parents through cross-over to form offspring oa with a probability p) (e)Mutate offspring in Oa with a probability pm) (f select the new generation Ca from (the previous generation Ca-1, e.g the best individuals are copied and the offspring g g: generation Note: The things in 0 might or might not be carried out 2021/1/30 EIE426-AICV
2021/1/30 EIE426-AICV 10 General Genetic Algorithm (1) Let g = 0. (2) Initialize the initial generation Cg . (3) While no stopping criterion is satisfied (a) Evaluate the fitness of each individual in Cg . (b) g g+1. (c) Select parents from Cg-1 . (d) Recombine selected parents through cross-over to form offspring Og (with a probability pc ). (e) Mutate offspring in Og (with a probability pm). (f) Select the new generation Cg from (the previous generation Cg-1 , e.g., the best individuals are copied) and the offspring Og . g: generation Note: The things in () might or might not be carried out
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机组成原理》课程电子教案(PPT课件讲稿)第4章 指令系统.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第五章 运输层.ppt
- C++ Basics(PPT讲稿).ppt
- 河南中医药大学(河南中医学院):《计算机文化》课程教学资源(PPT课件讲稿)第五章 运输层.pptx
- 南京航空航天大学:《数据结构》课程教学资源(PPT课件讲稿)第七章 图(微软精品课程建设).ppt
- 香港浸会大学:Programming Interest Group(PPT讲稿)Combinatorics & Number Theory.ppt
- 河南中医药大学(河南中医学院):《计算机网络》课程教学资源(PPT课件讲稿)第二章 物理层.ppt
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 03 The term vocabulary and postings lists.ppt
- A Unified Approach to Route Planning for Shared Mobility.pptx
- 同济大学:《软件测试》课程教学资源(PPT课件讲稿)第6章 功能测试(朱少民).ppt
- 香港理工大学:Introduction to Matlab(PPT讲稿)Image Processing with MATLAB.pptx
- 同济大学:《机器学习》课程教学资源(PPT讲稿)决策树 Decision Tree.pptx
- 河南中医药大学:《网络技术实训》课程教学资源(PPT课件讲稿)网络建设中的关键技术(主讲:路景鑫).pptx
- 微信公众平台开发与应用(PPT讲座,谭海兵).pptx
- 《计算机常用工具软件》教学资源(PPT讲稿)第8章 音频工具.ppt
- 应用层网络(PPT课件讲稿)Application-layer Overlay Networks.ppt
- 中国科学技术大学:《信息论与编码技术》课程教学资源(PPT课件讲稿)第6章 有噪信道编码定理.pptx
- 《单片机原理与应用》课程教学资源(PPT课件讲稿)第2章 MCS-51单片机结构及原理.pptx
- 深圳大学:《编译原理》课程教学资源(PPT课件讲稿,共四章,尹剑飞).ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第十章 人机交互接口(主讲:刘忠国).ppt
- 上海交通大学:自然语言处理(PPT课件讲稿)Natural Language Processing.ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿,2017)第4章 分布式数据库HBase.ppt
- 《软件工程》课程教学资源(PPT讲稿)软件测试——系统测试.pptx
- 香港浸会大学:《Data Communications and Networking》课程教学资源(PPT讲稿)Chapter 9 High Speed LANs and Wireless LANs.ppt
- Software Reliability & Testing(PPT讲稿)Overview of Software Reliability Engineering.ppt
- 《Java程序开发》课程教学资源(PPT课件讲稿)第11章 Struts2框架技术.ppt
- 北京航空航天大学:《数据挖掘——概念和技术(Data Mining - Concepts and Techniques)》课程教学资源(PPT课件讲稿)Chapter 02 Getting to Know Your Data.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第三章 数据链路层.ppt
- 《信息系统与数据库技术》课程教学资源(PPT课件讲稿)第4章 T-SQL与可编程对象.ppt
- 香港理工大学:数据仓库和数据挖掘(PPT讲稿)Data Warehousing & Data Mining.ppt
- 山西农业大学:大数据技术原理与应用(PPT讲稿)Development and application of bigdata technology.ppt
- Peer-to-Peer Networks:Distributed Algorithms for P2P Distributed Hash Tables.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)Chapter 01 量化设计与分析基础(主讲:周学海).ppt
- 《计算机视觉》课程教学资源(PPT课件讲稿)边缘和线特征提取.ppt
- 厦门大学:《数据库系统原理》课程教学资源(PPT课件讲稿,2016版)第五章 数据库完整性.ppt
- 四川大学:《Linux操作系统》课程教学资源(PPT课件讲稿)第2章 Linux操作系统管理基础.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 树与二叉树(6.1-6.3).ppt
- 《Java语言程序设计》课程教学资源(PPT课件讲稿)第三章 Java面向对象程序设计.ppt
- 香港科技大学:Advanced Topics in Next Generation Wireless Networks.ppt
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 04 Feature extraction and tracking.pptx