《包装技术基础》(英文版) 第13课 机械冲击理论

Lesson 13 Mechanical Shock Theory 第13课机械冲击理论
Lesson 13 Mechanical Shock Theory 第13课 机械冲击理论

Introduction Throughout the distribution system, packages are manhandled and mishandled in various ways dropped, thrown, kicked and otherwise roughly abused fall from conveyors or forklifts and crash to the floor subjected to a variety of vehicle impacts; trucks starting, stopping, hitting chuckhole and railroad crossings, railcar humping, jolting and other moderately violent actions suffers an impact with another object: floor, truck bed, pallet, bulkhead or another package. A mechanical shock occurs when an object's position, velocity or acceleration suddenly changes. Such a shock may be characterized by a rapid increase in acceleration followed by a rapid decrease over a very short period of time. Figure 13.1: the acceleration versus time plot for most shocks
Introduction ◼ Throughout the distribution system, packages are manhandled and mishandled in various ways: dropped, thrown, kicked and otherwise roughly abused; fall from conveyors or forklifts and crash to the floor; subjected to a variety of vehicle impacts; trucks starting, stopping, hitting chuckholes and railroad crossings, railcar humping, jolting and other moderately violent actions; suffers an impact with another object:floor, truck bed, pallet, bulkhead or another package. ◼ A mechanical shock occurs when an object's position, velocity or acceleration suddenly changes. Such a shock may be characterized by a rapid increase in acceleration followed by a rapid decrease over a very short period of time. ◼ Figure 13.1: the acceleration versus time plot for most shocks

ACCELERATION ACCELERATION gs time(milliseconds) time(mIlliseconds) a Figure 13.1 Representation of mechanicalshock
Figure 13.1 Representation of mechanical shock

边sh a package shock may typically be 20 milliseconds(. 020 seconds)long and have a magnitude or height"of 150 gs. need to know both the magnitude of the acceleration and the duration of the shock The Free Falling Package the length of time it takes a package to fall from a drop height, h the downward velocity at which it will be traveling a moment before impact;, the impact velocity ugh As is shown in Figure 13.2. a package will rebound a little or a lot depending on the nature of the package and the surface it hits
A package shock may typically be 20 milliseconds (0.020 seconds) long and have a magnitude or "height" of 150 g's. need to know both the magnitude of the acceleration and the duration of the shock. The Free Falling Package ◼ the length of time it takes a package to fall from a drop height, h ◼ the downward velocity at which it will be traveling a moment before impact; , the impact velocity: ◼ As is shown in Figure 13.2. A package will rebound a little or a lot depending on the nature of the package and the surface it hits. g h t 2 = g h t 2 = g h t 2 = g h t 2 = v gh I = 2 vI = 2gh

V=0 V=V V=VI IMPACT REBOUND Total velocity change =I VII+I VR Figure 13.2 A falling package
Figure 13.2 A falling package

coefficient of restitution, e, describes the rebound velocity as a function of the impact velocity 13.1 total velocity changeR evr 13.2 △v=vr+vR (1+e)1=(1+e)2gh 13.3 Becauseo 1(typical values falling in the 0.3 to 0.5 range) 2gh≤A≤2√gh 13,4 velocity change is also numerically equal to the area beneath the shock pulse as shown in Figure 13.3
coefficient of restitution, e, describes the rebound velocity as a function of the impact velocity 13.1 total velocity change: 13.2 13.3 Because 0 1(typical values falling in the 0.3 to 0.5 range): 13.4 velocity change is also numerically equal to the area beneath the shock pulse as shown in Figure 13.3. vR = evI I R v = v + v v = (1+ e)vI = (1+ e) 2gh 2gh v 2 2gh

Area Veloci ty Change 山uOxu DURATIO MILLISECONDS Figure 13. 3 The relationship among shock parameters
Figure 13.3 The relationship among shock parameters

Package damage is related to the three factors involved in mechanical shock: Peak Acceleration ■ Duration a Velocity Change Mechanical Shock Theory Shown in Figure 13. 4, the product-package system consists of four basic components: the outer container, the cushion, the product, and a critical element a shown in Figure 13. 5: the product-package model:
Package damage is related to the three factors involved in mechanical shock: ◼ Peak Acceleration ◼ Duration ◼ Velocity Change Mechanical Shock Theory ◼ Shown in Figure 13.4, the product-package system consists of four basic components: the outer container, the cushion, the product, and a critical element. ◼ shown in Figure 13.5: the product-package model:

M1, CRITICAL ELEMENT M2, PRODUCT CONTAINER M CUSHION Figure 13. 4 A simple product- package system igure 13.5 A spring-mass model for the product-package system
Figure 13.4 A simple productpackage system F igure 13.5 A spring-mass model for the product-package system

M2-the mass of the product M1-represents the mass of the critical element or CE M3-represents the mass of the outer container Kl- the linear spring constant of the sprint-mass system representing the critical element k2 -the linear spring constant of the cushion system Assumptions for simplicity: a. ignore the mass of the outer container and assume that it provides no spring action b the cushion has no mass or damping and suffers no permanent deflection from a shock; C the product-package system impacts a perfectly rigid floor; d. the mass of the critical element is negligible compared to the mass of the product In Figure 13.6, the impact of a product-package:
◼ M2 - the mass of the product ◼ M1- represents the mass of the critical element or CE ◼ M3 - represents the mass of the outer container ◼ kl - the linear spring constant of the sprint-mass system representing the critical element ◼ k2 - the linear spring constant of the cushion system Assumptions for simplicity: a. ignore the mass of the outer container and assume that it provides no spring action; b. the cushion has no mass or damping and suffers no permanent deflection from a shock; c. the product-package system impacts a perfectly rigid floor; d., the mass of the critical element is negligible compared to the mass of the product. In Figure 13.6, the impact of a product-package:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《包装技术基础》(英文版) 第12课 冲击、振动和受压.ppt
- 《包装技术基础》(英文版) 第11课 包装印刷.ppt
- 《包装技术基础》(英文版) 第10课 包装中的平面设计.ppt
- 《包装技术基础》(英文版) 第9课 颜色.ppt
- 《包装技术基础》(英文版) 第8课 软包装复合材料.ppt
- 《机械制造与设计》课程教学资源(授课计划)第30-31课 平面弯曲及内力内力图.doc
- 《机械制造与设计》课程教学资源(授课计划)第28次课 圆轴扭转的强度条件.doc
- 《机械制造与设计》课程教学资源(授课计划)第27次课 圆轴扭转及内力图.doc
- 《机械制造与设计》课程教学资源(授课计划)第26次课 拉压的强度计算.doc
- 《机械制造与设计》课程教学资源(授课计划)第25次课 轴向拉压的变形及力学性能.doc
- 《机械制造与设计》课程教学资源(授课计划)第24次课 轴向拉压、内力的计算.doc
- 《机械制造与设计》课程教学资源(授课计划)第23次课 空间力系.doc
- 《机械制造与设计》课程教学资源(授课计划)第20-22次课 平面力系.doc
- 《机械制造与设计》课程教学资源(授课计划)第18-19次课 静力学基本概念.doc
- 《机械制造与设计》课程教学资源(授课计划)第11次课 渐开线齿轮的啮合,切齿原理、根切.doc
- 《机械制造与设计》课程教学资源(授课计划)第17次 课混合轮系及传动比.doc
- 《机械制造与设计》课程教学资源(授课计划)第16次课 周转轮系及传动比.doc
- 《机械制造与设计》课程教学资源(授课计划)第15次课 定轴轮系及传动比.doc
- 《机械制造与设计》课程教学资源(授课计划)第10次课 齿轮机构及分类齿轮的基本参数和几何尺寸.doc
- 《机械制造与设计》课程教学资源(授课计划)第9次课 凸轮轮廓曲线设计中应注意的几个问题.doc
- 《包装技术基础》(英文版) 第14课 产品脆值试验方法.ppt
- 《包装技术基础》(英文版) 第15课 缓冲包装设计七步法.ppt
- 《包装技术基础》(英文版) 第16课 运输包装.ppt
- 《包装技术基础》(英文版) 第17课 计算辅助包装设计系统.ppt
- 《包装技术基础》(英文版)第18课 概述.ppt
- 《包装技术基础》(英文版)第19课 包装线.ppt
- 《包装技术基础》(英文版)第20课 充填灌装系统.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第六章 辅助装置(流量控制阀).ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第一章 绪论(1.1-1.2).ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第一章 绪论(1.3)液压传动的控制方式.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第一章 绪论(主讲:方桂花).ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第二章 液压油液.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第三章 液压泵和液压马达.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第四章 液压缸.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第五章 液压阀.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第六章 辅助装置.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第七章 调速回路.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第八章 其它基本回路.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第九章 组合机床动力滑台液压系统.ppt
- 内蒙古科技大学:《液压传动——液压技术》课程教学课件(PPT讲稿)第十章 液压系统的设计与计算.ppt