上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 6 Introduction to convection

HEAT TRANSFER CHAPTER 6 Introduction to convection 们au Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 6 Introduction to convection

CH6- INTRODUCTION Where we’ ve been. Basic conduction Heat Transfer inished Fourier’slaw: k kvt Where we’ re going: Begin study of convective heat transfer Newtons law of cooling =h( T-T Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 2 CH6 – INTRODUCTION Where we’ve been …… Basic Conduction Heat Transfer Finished Fourier’s law: Where we’re going: Begin study of convective heat transfer. Newton’s law of cooling: dx dt q = −k q = −kt ( ) = − q h Ts T

Convective transfer problem A FAMILY CIRCUS 2-6 201 Eh ty Krg mures siN. "I forget Does holding the door open let the cold air in, or the warm out? Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 3 Convective transfer problem

CH6 INTRODUCTION KEY POINTS THIS CHAPTER What are the key variables when analyzing convection heat transfer? Review boundary layer concept and significance Generalidea of relationship between velocity and thermal profiles in a boundary layer. Effect oflaminar versus turbulent flow on heat transfer potential Boundary layer similarity This chapter will be taught in two lectures: the firstincludes text book sections $6. 1 to 6.4 the other includes text book sections 86.5 to 6.10 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 4 CH6 INTRODUCTION KEY POINTSTHIS CHAPTER • What are the key variables when analyzing convection heat transfer? • Review boundary layer concept and significance • General idea of relationship between velocity and thermal profiles in a boundary layer. • Effect of laminar versus turbulent flow on heat transfer potential • Boundary layer similarity • This chapter will be taught in two lectures: the first includes text book sections §6.1 to 6.4 the other includes text book sections §6.5 to 6.10

Convection overview Consider a flat plate oflength L, in air flow with velocity uoo and temperature Too y uoo, Too 1,7 Local heat flux is where h is the q"=H(T-7) local heat transfercoefficient Total heat transfer rate. ∫ql4=(,-T)hll q=hA(T-T average heat transfer coefficient Determination ofh'will rely on analytical as well as empirical data Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 5 Convection overview • Consider a flat plate of length L, in air flow with velocity u and temperature T • Local heat flux is: where h is the local heat transfer coefficient • Total heat transfer rate: h = average heat transfer coefficient Determination of ‘h’ will rely on analytical as well as empirical data ( ) = − q h Ts T = = − s As s s A q q dAs (T T ) hdA ( ) q = hAs Ts −T

Convection overview(Contd) Same principal applies to any arbitrary shape, not Just a flat plate Average convection heat transfer coefficient hdA. or, for unit width hdx S So. we need to know how h varies with x. the distance from the leading edge What do you think key parameters that might influence h? Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 6 Convection overview (Cont’d) • Same principal applies to any arbitrary shape, not just a flat plate • Average convection heat transfer coefficient: So, we need to know how h varies with x, the distance from the leading edge…….. What do you think key parameters that might influence h? q dAs As Ts , or, for unit width: = As s s hdA A h 1 = L hdx L h 0 1

Key parameters Transfer potential: forced flow or free flow Phase change: boiling and condensation Flow conditions laminar or turbulent flow Geometries: shape, size, position and roughness Properties: density, viscosity, thermal conductivity, specific heat, and so on Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 7 Key parameters • Transfer potential: forced flow or free flow • Phase change: boiling and condensation • Flow conditions: laminar or turbulent flow • Geometries: shape, size, position and roughness. • Properties: density, viscosity, thermal conductivity, specific heat, and so on

E Xample Given Experimental results for measured local heat transfer coefficient h for flow over a flat plate with a rough sur face where: a=coefficient h,(x)=ax 0.3 x= distance from leading edge Find expression for average heat transfer coefficient. and the relation of average heat transfer coefficient to the local coefficient sh Jar 03 dx=jx. dx 0 0.7 0.7x Distance from leading edge Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 8 Example Given • Experimental results for measured local heat transfer coefficient h for flow over a flat plate with a rough surface • where: a = coefficient x = distance from leading edge – Find expression for average heat transfer coefficient, and the relation of average heat transfer coefficient to the local coefficient ( ) −0.3 h x = ax x 0.7 0 0.3 0 0.3 0.7 1 1 x x a h x dx x a a x dx x h x x x x = = = − −

The Convection Boundary layers Velocity Boundary Layer Free stream 6(x Velocity boundary a For fluid flow over a flat plate which disturbs the fluid flow Asy→>∞:u= u where u is velocity in X-direction As y>0: u=0(no-slip condition) The boundary layer thickness is defined as the value at which: u(y)=0.99u The boundary layer thickness 8 varies with x Shear Stress Dynamic viscosity 0 Local friction coefficient Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 9 The Convection Boundary Layers Velocity Boundary Layer • For fluid flow over a flat plate, which disturbs the fluid flow: – As y→: where u is velocity in x-direction – As y→0: (no-slip condition) – The boundary layer thickness is defined as the value at which: – The boundary layer thickness varies with x • Shear Stress • Local friction coefficient =0 = y s y u = 2 2 u C s f u = u u = 0 = u u(y) 0.99 Dynamic viscosity

The Convection Boundary layers Thermal boundary laver Free stream (x) Therma T boundary rer A hot or cold plate alters the temperature distribution in the air Asy→>∞:7()=T Asy→>0:T(y) The thermal boundary layer thickness is defined as the value at which 0.99 T-To The thermal boundary layer thickness, st also varies(increases)with x Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 10 The Convection Boundary Layers Thermal Boundary Layer • A hot or cold plate alters the temperature distribution in the air – As y→: – As y→0: – The thermal boundary layer thickness is defined as the value at which: – The thermal boundary layer thickness, t also varies (increases) with x 0.99 ( ) = − − T T T T y s s air Ts T =T T(y) Ts T( y) =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 哈尔滨工业大学:PHOENICS软件——计算传热学与计算流体力学的理想选择.ppt
- 《传热学》(Heat Transfer)讲义(PPT课件).ppt
- 《物理设计性实验》课程教学资源:实验六 全息干涉技术.pdf
- 《物理设计性实验》课程教学资源:实验五 夫兰克-赫兹实验中弱电流的测量.pdf
- 《物理设计性实验》课程教学资源:实验四 真空获得与真空镀膜.pdf
- 《物理设计性实验》课程教学资源:实验三 温度传感器特性的研究.pdf
- 《物理设计性实验》课程教学资源:实验二 传感器系列实验.pdf
- 《物理设计性实验》课程教学资源:实验一 RLC串联电路特性的研究.pdf
- 《超导的量子理论》讲义(PPT课件).ppt
- 西南交大:《大学物理》(双语版)CHAPTER 9 Impulse, Momentum and Collision.pdf
- 西南交大:《大学物理》(双语版)CHAPTER 7 Simple Harmonic Oscimation.pdf
- 西南交大:《大学物理》(双语版)CHAPTER 8 Work, Energy and The CWe Theorem.pdf
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第十讲 光学薄膜制备工艺.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第九讲 APS1104真空室内情况.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第八讲 光学薄膜的类型与符号.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第七讲 全介质高反膜.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第六讲 介质分光镜于金属分光镜的比较.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第五讲 典型膜系介绍.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第四讲 复习——对于多层膜.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第三讲 平面电磁波理论——反射和折射定律复习.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 6 Introduction to convection.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 7 External flow.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 7 External flow.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 8 Internal flow.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 8 Internal flow.ppt
- 《电磁学》课程教学资源(第二版,教案讲义)第一章 静电学的基本规律.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第六章 匀速运动的电荷的电场与磁场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第三章 稳恒电流.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第二章 静电场与导体.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第七章 物质中的电场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第四章 稳恒电流的磁场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第五章 随时间变化的电磁场麦克斯韦方程.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第八章 物质中的磁场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第九章 交流电路.doc
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第一章 静电学的基本规律(丁毅).ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第二章 静电场与导体.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第三章 稳恒电流.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第四章 稳恒电流的磁场.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第五章 随时间变化的电磁场.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第一章 静电学的基本规律.ppt