上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 7 External flow

HEAT TRANSFER CHAPTER 7 External flow 们au #1 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 7 External flow

External Flow: Flat Plate Topic of the day Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 2 External Flow: Flat Plate Topic of the Day

External Flow: Flat Plate Where we' ve been∴ General overview of the convection transfer equations Developed the key non-dimensional parameters used to characterize the boundary layer flow and convective heat and mass transfer hl N k Where were going Applications to external flow Flat plate Other shapes → Next time Then onto internal flow Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 3 External Flow: Flat Plate Where we’ve been …… • General overview of the convection transfer equations. • Developed the key non-dimensional parameters used to characterize the boundary layer flow and convective heat and mass transfer. Where we’re going: • Applications to external flow – Flat plate Today – Other shapes Next time Then onto internal flow …… f k h L Nu =

Differences between external and internal flow External flow Boundary layer develops freely without constraints Free strea olx Velocity boundar Internal flow: boundary layer is constrained and eventually merges #4 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 4 Differences between external and internal flow • External flow: Boundary layer develops freely, without constraints • Internal flow: Boundary layer is constrained and eventually merges

How this impacts convective heat transfer Recall the boundary layer convection equations Free stream 6(x) Thermal boundary T≠T oT temperature fluid thermal gradient conductivity As you go further from the leading edge, the boundary layer continues to grow. Assuming the sur face and freestream t do not change with increasing distance x' boundary layer thickness. 8.1 aT ano gs Also Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 5 How this impacts convective heat transfer • Recall the boundary layer convection equations: • As you go further from the leading edge, the boundary layer continues to grow. Assuming the surface and freestream T do not change: with increasing distance ‘x’: – Boundary layer thickness, , – so – and fluid thermal conductivity wall temperature gradient Ts T Also =0 = − y s f y T q k =0 y y T s q

Methods to evaluate convection heat transfer Empirical(experimentalanalysis Use experimental measurements in a controlled lab setting to correlate heat and/or mass transfer in terms of the appropriate non-dimensional parameters Theoretical or Analytical approach Solving of the boundary layer equations for a particular geometry Example · Solve for t* Use evaluate the local nusselt number Nu Compute local convection coefficient, hx Use these(integrate)to determine the average convection coefficient over the entire surface Exact solutions possible for simple cases Approximate solutions also possible using an integralmethod Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 6 Methods to evaluate convection heat transfer • Empirical(experimental) analysis – Use experimental measurements in a controlled lab setting to correlate heat and/or mass transfer in terms of the appropriate non-dimensional parameters • Theoretical or Analytical approach – Solving of the boundary layer equations for a particular geometry. – Example: • Solve for T* • Use evaluate the local Nusselt number, Nux • Compute local convection coefficient, hx • Use these (integrate) to determine the average convection coefficient over the entire surface – Exact solutions possible for simple cases. – Approximate solutions also possible using an integral method

Empirical method to obtain heat transfer coefficient How to set up an experimental test? Let' s say you want to know the heat transfer rate of an airplane wing(with fuel inside) flying at steady conditions wing surface What are the parameters involved? Ⅴ Telocity, wing length. L Prandtl number, Pr -viscosity, u Nusselt number. Nu Which of these can we control easily? Looking for the relation Experience has shown the following relation works well Nu=cRe pr L r Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 7 Empirical method to obtain heat transfer coefficient • How to set up an experimental test? • Let’s say you want to know the heat transfer rate of an airplane wing (with fuel inside) flying at steady conditions…………. • What are the parameters involved? – Velocity, –wing length, – Prandtl number, –viscosity, – Nusselt number, • Which of these can we control easily? • Looking for the relation: Experience has shown the following relation works well: T ,U Twing surface U L Pr Nu m n Nu = C Re L Pr

Empirical method to obtain heat transfer coefficient Experimental test setup Power input L Insulation Measure current(hence heat transfer )with various fluids and test conditions for t. u fluid properties are typically evaluated at the mean film temperature T+t Nur=C Re "mPr/ P CRet APr Log Re Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 8 T ,U = Power input insulation L Empirical method to obtain heat transfer coefficient • Experimental test setup • Measure current (hence heat transfer) with various fluids and test conditions for • Fluid properties are typically evaluated at the mean film temperature T ,U 2 + T T T s f

Analytical Solution- Laminar Flow Assume Steady, incompressible, laminar flow Constant fluid properties For flat plate TU Boundary layer equations 0 Continui ax a au au au Momentum l-+1 Energy aT aT 02T Blasius developed a similarity solution to the hydrodynamic equations in 1908 based on the stream function, y(x,y) Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 9 Analytical Solution – Laminar Flow • Assume: – Steady, incompressible, laminar flow – Constant fluid properties – For flat plate, • Boundary layer equations • Blasius developed a similarity solution to the hydrodynamic equations in 1908 based on the stream function, (x,y) = 0 + y v x u 2 2 y u y u v x u u = + 2 2 y T y T v x T u = + Continuity Momentum Energy T ,U Ts y

Analytical Solution - Laminar Flow(Contd dv≡ ax Define new dependent and independent variables f()≡ ll、/ n≡yVl2/ The momentum equation can be rewritten as And the boundary conditions are df f(o)=0 and Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 10 Analytical Solution – Laminar Flow (Cont’d) • Define new dependent and independent variables, • The momentum equation can be rewritten as • And the boundary conditions are y u x v − and u x u f / ( ) y u /x 2 0 2 2 3 3 + = d d f f d d f (0) 0 0 = = = f d df =1 = d df and
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 6 Introduction to convection.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 6 Introduction to convection.ppt
- 哈尔滨工业大学:PHOENICS软件——计算传热学与计算流体力学的理想选择.ppt
- 《传热学》(Heat Transfer)讲义(PPT课件).ppt
- 《物理设计性实验》课程教学资源:实验六 全息干涉技术.pdf
- 《物理设计性实验》课程教学资源:实验五 夫兰克-赫兹实验中弱电流的测量.pdf
- 《物理设计性实验》课程教学资源:实验四 真空获得与真空镀膜.pdf
- 《物理设计性实验》课程教学资源:实验三 温度传感器特性的研究.pdf
- 《物理设计性实验》课程教学资源:实验二 传感器系列实验.pdf
- 《物理设计性实验》课程教学资源:实验一 RLC串联电路特性的研究.pdf
- 《超导的量子理论》讲义(PPT课件).ppt
- 西南交大:《大学物理》(双语版)CHAPTER 9 Impulse, Momentum and Collision.pdf
- 西南交大:《大学物理》(双语版)CHAPTER 7 Simple Harmonic Oscimation.pdf
- 西南交大:《大学物理》(双语版)CHAPTER 8 Work, Energy and The CWe Theorem.pdf
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第十讲 光学薄膜制备工艺.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第九讲 APS1104真空室内情况.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第八讲 光学薄膜的类型与符号.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第七讲 全介质高反膜.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第六讲 介质分光镜于金属分光镜的比较.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第五讲 典型膜系介绍.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 7 External flow.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 8 Internal flow.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 8 Internal flow.ppt
- 《电磁学》课程教学资源(第二版,教案讲义)第一章 静电学的基本规律.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第六章 匀速运动的电荷的电场与磁场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第三章 稳恒电流.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第二章 静电场与导体.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第七章 物质中的电场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第四章 稳恒电流的磁场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第五章 随时间变化的电磁场麦克斯韦方程.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第八章 物质中的磁场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第九章 交流电路.doc
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第一章 静电学的基本规律(丁毅).ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第二章 静电场与导体.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第三章 稳恒电流.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第四章 稳恒电流的磁场.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第五章 随时间变化的电磁场.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第一章 静电学的基本规律.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第七章 物质中的电场.ppt
- 《电磁学》课程教学资源(第二版,PPT课件讲稿)第八章 物质中的磁场.ppt