西南交大:《大学物理》(双语版)CHAPTER 7 Simple Harmonic Oscimation

UNIVERSITY PHYSICS I CHAPTER 7 Simple Harmonic Oscimation §7.1hook' s force law 1. Ideal model-spring oscillator k 0000000m x A x=0 +A elasticity inertia Equilibrium position 2. Hook's force law Horizontal direction: =-k i 1
1 §7.1 Hook’s force law 1. Ideal model—spring oscillator Equilibrium position − A + A x Horizontal direction: 2. Hook’s force law F kxi ˆ s = − r elasticity inertia

87.2 Simple harmonic oscillation 1. Differential equation of a simple harmonic oscillation and its solution F=lxi =ma -kri=m-i dt d'x +kx=0 cco0000mi/ General Solution: x=0 x x(t=acos at+bsin at A=(a +b or x(=Acos(at+o) tang= 87.2 Simple harmonic oscillation 2. The quantities describing the oscillation Displacemnt at time t Phase x()=Acos(ot+φ) Amplitude Time m Angular frequency constant angle
2 §7.2 Simple harmonic oscillation 1. Differential equation of a simple harmonic oscillation and its solution x 0 d d 2 2 + x = m k t x i t x kxi m ˆ d d ˆ 2 2 Fx kxi max − = r r = − =ˆ General Solution: or ( ) cos( ) ( ) cos sin ω φ ω ω = + = + x t A t x t a t b t a b A a b = − = + tanφ ( ) 2 2 1 2 §7.2 Simple harmonic oscillation A m x 2. The quantities describing the oscillation

87.2 Simple harmonic oscillation Angular frequency, period and frequency dx k k a2x(t)+x()=0 dt x(r)=Acos(ar+小)∴.a2 =—or Angular frequency a is related to the spring constant and the mass. It is decided by the nature of the system. Unit is rad/s The period T: x(t)=Acos(at+o) x(t+T)=Acos[o(t+r)+oI 87.2 Simple harmonic oscillation 2丌 OT=2丌T Unit is s Frequency v: v=2= 0=2元V 2兀 Unit is 1/s or Hertz(Hz). ② Amplitude dx(t) x(t)=Acos(at+o) v(t)=dr -Asin(at+o) Fo=x(0=Acos t=0 vo=v(0)=-A@sin o A=xm=x5+ The range of the oscillation is 2A=2x
3 §7.2 Simple harmonic oscillation ① Angular frequency , period and frequency 0 d d 2 2 + x = m k t x x(t) = Acos(ωt +φ ) m k m k x t m k x t ∴ = = − + = ω ω ω or ( ) ( ) 0 2 2 Q Angular frequency ω is related to the spring constant and the mass. It is decided by the nature of the system. Unit is rad/s. The period T : ( ) cos[ ( ) ] ( ) cos( ) ω φ ω φ = + = + + = + x t T A t T x t A t §7.2 Simple harmonic oscillation ω π ω π 2 T = 2 T = Unit is s. Frequency ν : ω πν π ω ν 2 2 1 = = = T Unit is 1/s or Hertz (Hz). ②Amplitude x(t) = Acos(ωt +φ ) sin( ) d d ( ) ( ) = = −Aω ωt +φ t x t v t t =0 ω φ φ (0) sin (0) cos 0 0 v v A x x A = = − = = 2 2 2 0 0 ω v A x x = m = + The range of the oscillation is 2A=2xm

87.2 Simple harmonic oscillation Initial phase angle and phase t=0 o=(0)=Acos d 如=tanx(-" v=v(0)=- Asinφ o describe the initial state of the spring oscillator It is called initial phase or phase constant A and is related to the initial states or conditions of the system at+o is called the phase of the motion. It describes the states of the oscillation system 87.2 Simple harmonic oscillation x(t)=Acos(at+p) v()> dx(t)_-A@sin(at+o) dt at+o=T/3 x(t)=Ai v(t) oAi aH-m3x()2写训=Y3 3. The graphs ofx(o), v(o) and a(t) of simple harmonic oscillation
4 §7.2 Simple harmonic oscillation ③Initial phase angle and phase t =0 ω φ φ (0) sin (0) cos 0 0 v v A x x A = = − = = tan ( ) 0 1 0 ω φ x v = − − φ describe the initial state of the spring oscillator. It is called initial phase or phase constant. A and φ is related to the initial states or conditions of the system. ωt+φ is called the phase of the motion. It describes the states of the oscillation system. x(t) = Acos(ωt +φ ) sin( ) d d ( ) ( ) = = −Aω ωt +φ t x t v t §7.2 Simple harmonic oscillation ωt+φ=π/3 x t Ai v t Ai ˆ 2 3 ( ) ˆ 2 1 ( ) = = − ω r r ωt+φ= -π/3 x t Ai v t Ai ˆ 2 3 ( ) ˆ 2 1 ( ) = = ω r r 3. The graphs of x(t), v(t) and a(t) of simple harmonic oscillation

87.2 Simple harmonic oscillation x(t)=Acos(@t +o) +4 v(= dx(t)=-Aasin(at+P)E o d d'x(t (a) a()= +a4 dt -A@ cos(at +o) (b) +x.p=0a=-a x=0v=-V.a=0 x=-X.=0a=+a 87.2 Simple harmonic oscillation 4. How to determine if an oscillatory motion is simple harmonic oscillation? (criterion) Criterion 1: F total One force or the sum of several forces Criterion 2: k +“x=0 Criterion 3: x(t)=Acos(at+o)
5 §7.2 Simple harmonic oscillation x(t) = Acos(ωt +φ ) sin( ) d d ( ) ( ) = = −Aω ωt +φ t x t v t cos( ) d d ( ) ( ) 2 2 2 = − ω ω +φ = A t t x t a t m m m m m x x v a a x v v a x x v a a = − = = + = = − = = + = = − 0 0 0 0 +A +A +ωA −ωA A 2 +ω A 2 +ω φ=0 4. How to determine if an oscillatory motion is simple harmonic oscillation?(criterion) F kxi ˆ total = − r Criterion 1: One force or the sum of several forces Criterion 2: 0 d d 2 2 + x = m k t x Criterion 3: x(t) = Acos(ωt +φ ) §7.2 Simple harmonic oscillation

87.3 a vertically oriented spring 1. Is the motion of this system simple harmonic? Fares x=0 m New equilibrium position: l= mg total =-k(xe+x)i+ mgi 87. 3 a vertically oriented spring Ftotal=-k(x '+r)i+mgi=-kxi Kxi= ma,I=m-t dt dx k +x=0 dt m The origin ofx is the new equilibrium position. 6
6 §7.3 A vertically oriented spring 1. Is the motion of this system simple harmonic? New equilibrium position: kx mg e ′ = F k x x i mgi e ˆ ˆ ( ) total = − ′ + + r §7.3 A vertically oriented spring i t x kxi max i m ˆ d d ˆ ˆ 2 2 − = = F k x x i mgi kxi x e ˆ ˆ ˆ ( ) ,total = − ′ + + = − r m k x m k t x = + = ω 0 d d 2 2 The origin of x is the new equilibrium position

87.3 A vertically oriented spring Example 1: as shown in Fig. 1, n when the block of mass m falls freely and make a completely h unelastic collision with the plate of mass m, the system will oscillate up and down. Find the k T,Aandφ of the motion. 1g. Solution: The system is composed of 2 m and k. The angular frequency and the period are respectively 2m T=2丌 2m k 7.3 A vertically oriented spring From the initial condition ≈、mg∠0 k h m2gh=2m→V >0 t=0 2 We can obtain the amplitude k A=1x6+2 42 mg 1+ kh mg
7 §7.3 A vertically oriented spring Solution: The system is composed of 2 m and k. , 2m k ω = k m T 2 = 2π The angular frequency and the period are respectively m m h k Example 1: as shown in Fig. 1, when the block of mass m falls freely and make a completely unelastic collision with the plate of mass m, the system will oscillate up and down. Find the T, A and φ of the motion. Fig. 1 §7.3 A vertically oriented spring 0 2 0 = > gh v 0 0 2 2 0 m gh mv k mg x = =− < m m h k x o t =0 0 v r x0 From the initial condition mg kh k mg k mgh k v m g A x = + = + = + 1 2 2 2 2 2 2 0 0 ω We can obtain the amplitude

87.3 A vertically oriented spring From the initial condition x 小==兀 vn=- Dosing>0→sinφ<0 B=arct(--0)+r=arct 十兀 g 87.4 simple harmonic motion and the uniform circular motion I. Gelileo's observation of the moons of Jupiter 5 an.15202530Feb.510152025Mar.1 What can you imagine from the results? 8
8 π π ω φ = − + = + mg kh x v arctg( ) arctg 0 0 sin 0 cos 0 0 0 = − > = π From the initial condition §7.3 A vertically oriented spring §7.4 simple harmonic motion and the uniform circular motion 1. Gelileo’s observation of the moons of Jupiter What can you imagine from the results?

87.4 simple harmonic motion and the uniform circular motion >0 vKO KO 0 Simple harmonic motion can be described as the projection of a uniform circular motion along a diameter of the circle. A is called rotating vector. 7. 4 simple harmonic motion and the uniform circular motion v(1) x(t)=Acos(@t+o) v(t)=- Ao sin(ot+φ)
9 §7.4 simple harmonic motion and the uniform circular motion Simple harmonic motion can be described as the projection of a uniform circular motion along a diameter of the circle. A is called rotating vector. r A r ϕ π 2 3 = ϕ =π ϕ = 0 ϕ = π 2 0 0 v x 0 0 > > v x 0 0 > < v x 0 0 < < v x ω A r §7.4 simple harmonic motion and the uniform circular motion A ωA x(t) = Acos(ωt +φ ) v(t) = −Aω sin(ωt +φ )

87.4 simple harmonic motion and the uniform circular motion The virtues of describing the simple harmonic motion by using the uniform circular motion +中 Express the A, Tand a(1)P Q汁+ of simple harmonic motion; determine the initial phase of oscillation easily make the superposition a(t=-A cos(ar +o) of several oscillations conveniently. 7. 4 simple harmonic motion and the uniform circular motion Example 1: There is a simple harmonic oscillation of amplitude 0.24 m and period 3s. At initial time, t=0, xo=0. 12m, vo<0. Find the initial phase and the shortest time interval in which the oscillator arrive at position x=-0 12m Solution Draw the rotating vectors at t=0 and t A(t=0) p=丌/3 0.120012024x(m 4t!=-T=0.5s 6 10
10 §7.4 simple harmonic motion and the uniform circular motion A 2 ω ( ) cos( ) 2 a t = −Aω ωt +φ The virtues of describing the simple harmonic motion by using the uniform circular motion: 1express the A, T and ω t+φ of simple harmonic motion; 2determine the initial phase of oscillation easily; 3make the superposition of several oscillations conveniently. §7.4 simple harmonic motion and the uniform circular motion Example 1: There is a simple harmonic oscillation of amplitude 0.24 m and period 3s. At initial time, t=0, x0=0.12m, v0<0. Find the initial phase and the shortest time interval in which the oscillator arrive at position x= −0.12m. x(m) o 0.24 Solution: -0.12 A(t) r 0.5 s 6 1 ∆tmin = T = Draw the rotating vectors at t =0 and t . φ = π 3 0.12 A(t = 0) r φ
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西南交大:《大学物理》(双语版)CHAPTER 8 Work, Energy and The CWe Theorem.pdf
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第十讲 光学薄膜制备工艺.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第九讲 APS1104真空室内情况.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第八讲 光学薄膜的类型与符号.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第七讲 全介质高反膜.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第六讲 介质分光镜于金属分光镜的比较.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第五讲 典型膜系介绍.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第四讲 复习——对于多层膜.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第三讲 平面电磁波理论——反射和折射定律复习.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第二讲 薄膜光学的基础理论.ppt
- 长春理工大学:《薄膜光学》课程教学资源(PPT课件讲稿)第一讲 绪论.ppt
- 《大学物理》课程教学资源(习题集)电学试题(含答案).doc
- 《大学物理》课程教学资源(习题集)磁场周云(含答案).doc
- 《大学物理》课程教学资源(习题集)光栅衍射(含答案).doc
- 《大学物理》课程教学资源(习题集)光的偏振(含答案).doc
- 《大学物理》课程教学资源(习题集)光学习题(含答案).doc
- 《大学物理》课程教学资源(习题集)量子物理(含答案).doc
- 《固体物理》课程PPT教学课件(讲稿)晶体结构.ppt
- 《大学物理学》课程电子教案(PPT教学课件)第十章 稳定电流.ppt
- 《大学物理学》课程电子教案(PPT教学课件)第九章 导体、介质习题课.ppt
- 西南交大:《大学物理》(双语版)CHAPTER 9 Impulse, Momentum and Collision.pdf
- 《超导的量子理论》讲义(PPT课件).ppt
- 《物理设计性实验》课程教学资源:实验一 RLC串联电路特性的研究.pdf
- 《物理设计性实验》课程教学资源:实验二 传感器系列实验.pdf
- 《物理设计性实验》课程教学资源:实验三 温度传感器特性的研究.pdf
- 《物理设计性实验》课程教学资源:实验四 真空获得与真空镀膜.pdf
- 《物理设计性实验》课程教学资源:实验五 夫兰克-赫兹实验中弱电流的测量.pdf
- 《物理设计性实验》课程教学资源:实验六 全息干涉技术.pdf
- 《传热学》(Heat Transfer)讲义(PPT课件).ppt
- 哈尔滨工业大学:PHOENICS软件——计算传热学与计算流体力学的理想选择.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 6 Introduction to convection.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 6 Introduction to convection.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 7 External flow.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 7 External flow.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 8 Internal flow.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 8 Internal flow.ppt
- 《电磁学》课程教学资源(第二版,教案讲义)第一章 静电学的基本规律.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第六章 匀速运动的电荷的电场与磁场.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第三章 稳恒电流.doc
- 《电磁学》课程教学资源(第二版,教案讲义)第二章 静电场与导体.doc