北京大学:《数学物理方法》精品课程教学资源(教学大纲)物理专业教学大纲(90学时,包括习题课,吴崇试)

物理专业 数学物理方法教学大纲 90学时(包括习题课) 课程的目的与任务 本课程为物理系物理专业所开设,也可供应用物理专业参考 本课程在高等数学(一元和多元微积分、幂级数和 Fourier级数、微分方程、场论、线性代 数)和普通物理(力学、热学、电学)的基础上,以讲授古典数学物理中的常用方法为主,适当介 绍近年来的新发展,为后继的基础课程和专业课程研究有关的数学物理问题作准备,也为今后工 作中遇到的数学物理问题的求解提供基础。 内容和参考学时 复数和复变函 (2学时) 复数及其运算规则复数的几何表示复数序列复变函数复变函数的极限和连续无 穷远点 解析函数 ….(4学时) 导数解析函数初等函数多值函数√z-a多值函数ln(z-a)解析函数的几何性 质 复变积分 (4学时) 复变积分单连通区域的 Cauchy定理复连通区域的 Cauchy定理 cauchy积分公式 解析函数的高阶导数公式 无穷级数 (8学时) 复数级数函数级数含参量的积分的解析性幂级数解析函数的 Taylor展开 Taylor 级数求法举例解析函数的 Laurent展开 Laurent级数求法举例单值函数的孤立奇点 二阶线性常微分方程的幂级数解法 (4学时) 二阶线性常微分方程的常点和奇点在方程常点邻域内的解在方程正则奇点邻域内的解 Bessel方程的解 解析延拓 (1学时) 解析函数的零点孤立性和解析函数的唯一性解析延拓 留数定理及其应用 (6学时) 留数定理有理三角函数的积分无穷积分含三角函数的无穷积分实轴上上有奇点的 情形多值函数的积分留数定理的其它应用 r函数 (3学时)
✘ ✙ ✚ ✛ 2 ✜ ✢ ✣ ✤ ✥✦✜✢✧★✩✦✪✫ 90 ✬✭ (✮✯✰✱✲) ✳✴✵✶✷ ✸✷✹✺✻ ✼ ✲✽✾✿❀❁✿❀❂❃❄❅❆❇❈❉❊❋●✿❀❂❃❍■❏ ✼ ✲✽❑▲▼◆✬ (❖P◗❘P❙❚❯❱❲❳◆◗ Fourier ❳◆❱❙❯❨✽❱❩❬❱❭❪❫ ◆) ◗❴❵✿❀ (❛✬❱❜ ✬❱❝✬) ❞❡❢❣❇❤✐❥❦❧◆✬✿❀♠❞♥●❨♦✾♣❇qrs t✉✈✇❞①②③❇✾④⑤❞❡❢✲✽◗❂❃✲✽⑥⑦⑧⑨❞◆✬✿❀⑩✱❶❷❸❇❈✾❹④❺ ❶♠❻❼❞◆✬✿❀⑩✱❞❽❾❿❊❡❢❏ ➀✴➁➂➃➄➅➆➇ ➈➉➊➈➋➌➉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2 ✬✭) ➍ ◆➎➏➐➑➒➓ ➍ ◆❞➔→➣↔ ➍ ◆↕➙ ➍➛➜◆ ➍➛➜◆❞➝➞◗➟➠ ➡ ➢➤➥ ➦➧➌➉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) ➨ ◆ ❾➩➜ ◆ ➫▼➜ ◆ ❘➭➜ ◆ √ z − a ❘➭➜ ◆ ln(z − a) ❾➩➜ ◆❞➔→❪ ➯ ∗ ➈➋➲➳. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) ➍➛❚❯ ➵➟❵➸➺❞ Cauchy ➻❀ ➍ ➟❵➸➺❞ Cauchy ➻❀ Cauchy ❚❯➼➽ ❾➩➜ ◆❞▲➾➨ ◆➼➽ ➚➪➶➉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8 ✬✭) ➍ ◆❳◆ ➜ ◆❳◆ ➹❍➘❞❚❯❞❾➩❪ ❲❳◆ ❾➩➜ ◆❞ Taylor ③❅ Taylor ❳◆❽♦➴➷ ❾➩➜ ◆❞ Laurent ③❅ Laurent ❳◆❽♦➴➷ ➵➭➜ ◆❞➬➮➱➥ ✃❐❒❮❰Ï➳ÐÑÒÓ➶➉➦Ô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) Õ ➾❭❪♥❙❯❨✽❞♥➥ ◗➱➥ ❑❨✽♥➥Ö➺×❞❾ ❑❨✽Ø➓➱➥Ö➺×❞❾ Bessel ❨✽❞❾ ➦➧ÙÚ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1 ✬✭) ❾➩➜ ◆❞Û➥ ➬➮❪◗❾➩➜ ◆❞Ü❖❪ ❾➩ÝÞ ß➉àáâãäå. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(6 ✬✭) æ ◆➻❀ ⑧❀çè➜ ◆❞❚❯ ➡ ➢ ❚❯ ➹çè➜ ◆❞➡➢ ❚❯ éê❣❣⑧➱➥ ❞ ëì ❘➭➜ ◆❞❚❯ æ ◆➻❀❞➏í❋● ∗ Γ➌➉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3 ✬✭)

函数的定义r函数的基本性质业函数B函数 (4学时) Laplace变换 Laplace变换的基本性质 Laplace变换的反演普遍反演公式 数学物理方程和定解条件 (4学时) 弦的横振动方程杆的纵振动方程热传导方程稳定问题边界条件与初始条件内部 界面上的连接条件定解问题的适定性 线性偏微分方程的通解 (4学时) 线性偏微分方程的解的叠加性常系数线性齐次偏微分方程的通解常系数线性非齐次偏 微分方程特殊的变系数线性齐次偏微分方程波动方程的行波解 分离变量法 (4学时) 两端固定弦的自由振动矩形区域内的稳定问题多于两个自变量的定解问题两端固定 弦的强迫振动非齐次边界条件的齐次化 正交曲面坐标系 (4学时) 正交曲面坐标系正交曲面坐标系中的 Laplace算符 Laplace算符的平移转动和反 射不变性 Helmholtz方程在柱坐标系下的分离变数 Helmholtz方程在球坐标系下的分 离变数圆形区域 球函数 (7学时) Legendre多项式 Legendre多项式的微分表示 Legendre多项式的正交完备性Leg ende多项式的生成函数 Legendre多项式的递推关系连带 Legendre函数和球面调和 函数 柱函数 (7学时) Bessel函数的基本性质 Neumann函数 Bessel方程的本征值问题含 Bessel函数的 积分 Hankel函数虚宗量 Bessel函数半奇数阶 Bessel函数球 Bessel函数 分离变数法总结. 内积空间和函数空间*自伴算符的本征值问题 Sturm- Liouville型方程的本征值问题 从 Sturm- Liouville型方程本征值问题看分离变数法 积分变换的应用 (2学时) Laplace变换 Fourier变换小波变换的基本思想* 非齐次方程与 Green函数方法 (8学时) δ函数Gren函数的概念常微分方程初值问题的Gren函数稳定问题 Green函数的 般性质三维无界空间 Helmholtz方程的Gren函数圆内 Poisson方程第一边值问题 的 Green函数波动方程或热传导方程的Gren函数 变分法初步 (4学时) 泛函的概念泛函的极值泛函的条件极值微分方程定解问题和本征值问题的变分形式 Ritz方法 数值解法 (2学时)
✘ ✙ ✚ ✛ 3 Γ ➜ ◆❞➻î Γ ➜ ◆❞❡✼ ❪ ➯ Ψ ➜ ◆ B ➜ ◆ Laplace ➋ï . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) Laplace ➛ð Laplace ➛ð❞❡✼ ❪ ➯ Laplace ➛ð❞ñò ❴óñò➼➽ ➉ôõáÐÑ➊à➦ö÷. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) ø ❞ùúû❨✽ ü❞ýúû❨✽ ❜þ➨ ❨✽ ÿ➻⑩✱ ✁✂✄☎➫✆✂✄ × ✝ ✁✞❣❞➟✟✂✄ ➻❾⑩✱❞q ➻❪ ❒❮✠Ï➳ÐÑÒ✡➦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) ❭❪☛❙❯❨✽❞❾❞☞✌❪ ♥❁◆❭❪✍✎☛❙❯❨✽❞❵❾ ♥❁◆❭❪✏✍✎☛ ❙❯❨✽ ✑✒❞ ➛ ❁◆❭❪✍✎☛❙❯❨✽ ✓û❨✽❞✔✓❾ ➳✕➋✖Ô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4 ✬✭) ✗✘✙➻ ø ❞ ✚ ✛ úû ✜ ì ➸➺×❞ÿ➻⑩✱ ❘✢ ✗✣ ✚ ➛ ➘❞➻❾⑩✱ ✗✘✙➻ ø ❞✤✥úû ✏✍✎✁✂✄❞✍✎✦ ✧★✩✪✫✬✭ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) Ø✮✯✞✰✱❁ Ø✮✯✞✰✱❁♠❞ Laplace ➑✲ ∗ Laplace ➑✲❞✳✴❱✵û◗ñ ✶✷➛ ❪ Helmholtz ❨✽❑✸✰✱❁✹❞❯✺ ➛ ◆ Helmholtz ❨✽❑✻✰✱❁✹❞❯ ✺ ➛ ◆ ✼ ì ➸➺ ✽➌➉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7 ✬✭) Legendre ❘✾➽ Legendre ❘✾➽❞❙❯➣↔ Legendre ❘✾➽❞Ø✮✿❸❪ Legendre ❘✾➽❞❀❁➜ ◆ Legendre ❘✾➽❞❂❃⑨❁ ➟❄ Legendre ➜ ◆◗✻✞❅◗ ➜ ◆ ❆➌➉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7 ✬✭) Bessel ➜ ◆❞❡✼ ❪ ➯ Neumann ➜ ◆ Bessel ❨✽❞✼❇ ➭⑩✱ ➹ Bessel ➜ ◆❞ ❚❯ Hankel ➜ ◆ ❈❉➘ Bessel ➜ ◆ ❊➱◆➾ Bessel ➜ ◆ ✻ Bessel ➜ ◆ ➳✕➋➉Ô❋● . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) ×❚❍■◗ ➜ ◆❍■∗ ✚ ❏ ➑✲❞ ✼❇ ➭⑩✱ Sturm–Liouville ❑❨✽❞✼❇ ➭⑩✱ ▲ Sturm–Liouville ❑❨✽✼❇ ➭⑩✱▼❯✺ ➛ ◆♦ ➲➳➋ïÒäå . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2 ✬✭) Laplace ➛ð Fourier ➛ð ◆ ✓ ➛ð❞❡✼❖P ∗ ◗❘❙ÐÑ❚ Green ➌➉ÐÔ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8 ✬✭) δ ➜ ◆ Green ➜ ◆❞❯❱ ♥❙❯❨✽➫➭⑩✱❞ Green ➜ ◆ ÿ➻⑩✱ Green ➜ ◆❞ ❖❲❪ ➯ ç❳➡✁❍■ Helmholtz ❨✽❞ Green ➜ ◆ ✼× Poisson ❨✽❨❖➭⑩✱ ❞ Green ➜ ◆ ✓û❨✽❩ ❜þ➨ ❨✽❞ Green ➜ ◆ ➋➳Ô❬❭. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4 ✬✭) ❪➜ ❞❯❱ ❪➜ ❞➝➭ ❪➜ ❞✂✄➝➭ ❙❯❨✽➻❾⑩✱◗✼❇ ➭⑩✱❞➛ ❯ ì ➽ Ritz ❨♦ ➉❫➦Ô∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2 ✬✭)

数值微商二阶偏微分方程的有限差分法 结束语 (4学时) 阶线性偏微分方程的分类数学物理方程的反问题·非线性偏微分方程问题 几点说明 对于本大纲所列内容与学时分配建议,教师可根据各校实际情况适当取舍调整。 2.本课程包括复变函数和数学物理方程两部分。前者系统介绍解析函数的基本性质及其应 用;后者主要包括分离变量法和Gren函数方法以及最常用的两类特殊函数。基本内容的学时应 予保证。 在保证基本要求的基础上,应适当介绍一些近年来发展起来的新内容、新方法,如反问 题、非线性问题和小波变换等 4.非线性偏微分方程问题可以KdV方程为例 5.建议安排9次习题课,内容分别为:解析函数和多值函数;解析函数的幂级数晨开;r 函数和 Laplace变换;留数定理及其应用;常微分方程级数解法;分离变量法;球函数;柱函数; Green函数
❴ ❵ ❛ ❜ 4 ◆➭❙❝ Õ ➾☛❙❯❨✽❞⑧➞❞❯♦ ●❡❢ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 ✬✭) Õ ➾❭❪☛❙❯❨✽❞❯❣ ◆✬✿❀❨✽❞ñ⑩✱ ∗ ✏❭❪☛❙❯❨✽⑩✱ ∗ ❤✴✐❥❦❧ 1. ♠✢✼♥♦❄➙×♣ ☎✬✭❯qrs❇t✉❉✈✇①②é③ ë④qr⑤⑥❅⑦❏ 2. ✼ ✲✽✮✯➍➛➜◆◗◆✬✿❀❨✽✗✝ ❯❏⑧⑨❁⑩ st ❾➩➜ ◆❞❡✼ ❪ ➯ ➎➏❋ ●❶④ ⑨ ♣❷✮✯❯✺ ➛ ➘♦◗ Green ➜ ◆❨♦❤ ➎❸♥●❞✗ ❣✑✒➜ ◆❏❡ ✼ × ♣ ❞✬✭❋ ❹❺❻❏ 3. ❑ ❺❻❡ ✼ ❷❽❞❡❢❣❇❋qrst ❖❼ ✉✈✇②③❽ ✇ ❞①×♣ ❱①❨♦❇❾ñ⑩ ✱❱✏❭❪⑩✱◗◆ ✓ ➛ð▼❏ 4. ✏❭❪☛❙❯❨✽⑩✱❉❤ KdV ❨✽✾➷❏ 5. rs❿➀ 9 ✎✰✱✲❇×♣ ❯➁✾➂❾➩➜ ◆◗❘➭➜ ◆❶❾➩➜ ◆❞❲❳◆③❅❶ Γ ➜ ◆◗ Laplace ➛ð❶ æ ◆➻❀➎➏❋●❶♥❙❯❨✽❳◆❾♦❶❯✺ ➛ ➘♦❶✻ ➜ ◆❶✸ ➜ ◆❶ Green ➜ ◆❏
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《离散数学 Discrete Mathematics》课程教学计划.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学内容与组织.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案26.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案25.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案24.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案23.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案22.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案21.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案20.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案19.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案18.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案17.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案16.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案15.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案14.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案13.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案12.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案11.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案10.pdf
- 西安建筑科技大学:《复变函数与积分变换》课程教学资源(试卷习题)试题及答案9.pdf
- 北京大学:《数学物理方法》精品课程教学资源(教学大纲)应用物理专业教学大纲(54学时,不包括习题课,吴崇试).pdf
- 北京大学:《数学物理方法》精品课程教学资源(教学大纲)《复变函数》教学进度.pdf
- 北京大学:《数学物理方法》精品课程教学资源(教学大纲)《数学物理方程》教学进度.pdf
- 北京大学:《数学物理方法》精品课程教学资源(作业习题)第一部分 复变函数.pdf
- 北京大学:《数学物理方法》精品课程教学资源(作业习题)第二部分 数学物理方程.pdf
- 北京大学:《数学物理方法》精品课程教学资源(作业习题)例卷Ⅰ 复变函数试题.pdf
- 北京大学:《数学物理方法》精品课程教学资源(作业习题)例卷Ⅰ 复变函数试题(评分标准及答案).pdf
- 北京大学:《数学物理方法》精品课程教学资源(作业习题)例卷Ⅱ 数学物理方程试题.pdf
- 北京大学:《数学物理方法》精品课程教学资源(作业习题)例卷Ⅱ 数学物理方程试题(评分标准及答案).pdf
- 北京大学:《数学物理方法》精品课程教学资源(作业习题)例卷Ⅲ 数学物理方法(B)试题.pdf
- 北京大学:《数学物理方法》精品课程教学资源(作业习题)例卷Ⅲ 数学物理方法(B)试题(评分标准及答案).pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第1讲 复变函数.pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第2讲 解析函数.pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第3讲 多值函数.pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第4讲 复变积分(一).pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第5讲 复变积分(二).pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第6讲 无穷级数.pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第7讲 解析函数的Taylor展开.pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第8讲 解析函数的Laurent展开.pdf
- 北京大学:《数学物理方法》精品课程电子教案(A类)第一部分 复变函数_第10讲 常微分方程的幂级数解法(二).pdf