《微分流形》课程教学资源(英文讲义)PSet3-2 TRANSERSALITY

PROBLEMSET3,PART2:TRANSERSALITYDUE:OCT31[Smooth submanifolds as regular level sets](1Here is what we argued in class:一方面,由子流形的定义可知,对于任意9EX,均存在邻域V以及由坐标卡映射所诱导的光滑映射g:V→R(其中1=dimN-dimX是X在N中的余维数)使得g(0)=XnV。注意由g的构造可知dg是满射,于是0是g的正则值,且它的核为ker(dga)=TgX(a) Summarize the above as a lemma.(b)Showthat the"global version"fails:LetK be theKlein bottle and let S be itscentral circle. Prove that there is no smooth function f : K -→ R so that 0 is aregular value and f-l(O) = S.(c) (Not required) In general, suppose S is a smooth submanifold of M of codi-mension r, and suppose the normal bundle N(S, M) is trivial in the sense thatN(S,M)is isomorphic(You mayneed to find the exactmeaning of"isomorphic"betweenvector bundles) to S × Rr. Prove: There is a smooth map f : M -→ Rr so that0 ERr is a regular value of f and S=f-l(O).(d) (Not required) Conversely, suppose f : M → Rr is a submersion, and S = f-1(0)is a submanifold of M. Show that N(S, M) is trivial.(e)Writedownatheoremsummarizing (c)and (d).[Stability of various properties](2)We need the following definition:We say a propertyPconcerning maps in C(M,N) is a stable property ifit is preserved under small deformation, namely, if f e Co(M, N) satisfiesP and F is a smooth homotopy with F(r, o) = f, then there exists e > 0so that for each 0 2.Consider the map F(r,t) = rh(ta) as a homotopy with fo() =F(-,0).1
PROBLEM SET 3, PART 2: TRANSERSALITY DUE: OCT. 31 (1) [Smooth submanifolds as regular level sets] Here is what we argued in class: (a) Summarize the above as a lemma. (b) Show that the “global version” fails: Let K be the Klein bottle and let S be its central circle. Prove that there is no smooth function f : K → R so that 0 is a regular value and f −1 (0) = S. (c) (Not required) In general, suppose S is a smooth submanifold of M of codimension r, and suppose the normal bundle N(S, M) is trivial in the sense that N(S, M) is isomorphic(You may need to find the exact meaning of “isomorphic” between vector bundles) to S × R r . Prove: There is a smooth map f : M → R r so that 0 ∈ R r is a regular value of f and S = f −1 (0). (d) (Not required) Conversely, suppose f : M → R r is a submersion, and S = f −1 (0) is a submanifold of M. Show that N(S, M) is trivial. (e) Write down a theorem summarizing (c) and (d). (2) [Stability of various properties] We need the following definition: We say a property P concerning maps in C∞(M, N) is a stable property if it is preserved under small deformation, namely, if f ∈ C∞(M, N) satisfies P and F is a smooth homotopy with F(x, 0) = f, then there exists ε > 0 so that for each 0 2. Consider the map F(x, t) = xh(tx) as a homotopy with f0(·) = F(·, 0). 1

2PROBLEMSET3,PART2:TRANSERSALITYDUE:OCT.31[Stabilityoftransversal intersection](3)(a) Show that if M is compact and X is a smooth submanifold of N, then theproperty"f e Co(M,N) intersect X transversally"is a stable property.(b) (Not required)Let F:S×M Nbe a smooth map. Suppose M is compact,and X N is a closed submanifold. Denote fs() = F(s, ). Prove: the set[s E SI f, intersect X transversally]is an open subset of S.(4)[Lefschetz maps]You will need the following conceptions.Let f :M M be a smooth map.A point pE M is a called a fired point off if f(p) =p. We say f is a Lefschetz map if for each fixed point p of f, 1 isnot an eigenvalue of dfp :TpM -→ TpM. The local Lefschetz number Lp(f) ofa Lefschetz map at a fixed point p is the sign of the determinant det(df,-Id),i.e. Lp(f) := 1 if det(dfp - Id) > 0, and L(f) := -1 if det(dfp - Id) < 0.Do the following questions:(1) Let re : $2 → s? be the map “rotate $2 by an angle 0", (0 + 2k元), defined byre(l,,3) = (cos sino, sin+cos0, 3).Prove:re is a Lefschetz map.(2) Let V be a vector space, and L : V→ V a linear map. Let △ = ((u, u) : u e V)be the diagonal in V × V, and IL = [(u, Lu) : E V) be the graph of L inV× V.Prove: F intersects transversally if and only if 1 is not an eigenvalueof L.(3) Prove: If M is compact and f : M → M is a Lefschetz map, then f has onlyfinitelymanyfixed points.(4) The Lefschetz number of a Lefshetz map f is defined to be L(f) = f(P)=p Lp(f),where the summation is over all fixed points p. Compute L(re)for re in (1).(5)[Simply connectedness of Rn/M (dim M ≤n-3)) (Not required)LetMbeaconnected smoothmanifoldof dimensionm.Prove:if S CMisasmoothsubmanifold of dimension k ≤ m-3, then for any p E M-S, πi(M,p) ~ πi(M-S,p)
2 PROBLEM SET 3, PART 2: TRANSERSALITY DUE: OCT. 31 (3) [Stability of transversal intersection ] (a) Show that if M is compact and X is a smooth submanifold of N, then the property “f ∈ C∞(M, N) intersect X transversally” is a stable property. (b) (Not required) Let F : S × M → N be a smooth map. Suppose M is compact, and X ⊂ N is a closed submanifold. Denote fs(·) = F(s, ·). Prove: the set {s ∈ S | fs intersect X transversally} is an open subset of S. (4) [Lefschetz maps] You will need the following conceptions. Let f : M → M be a smooth map. A point p ∈ M is a called a fixed point of f if f(p) = p. We say f is a Lefschetz map if for each fixed point p of f, 1 is not an eigenvalue of dfp : TpM → TpM. The local Lefschetz number Lp(f) of a Lefschetz map at a fixed point p is the sign of the determinant det(dfp−Id), i.e. Lp(f) := 1 if det(dfp − Id) > 0, and Lp(f) := −1 if det(dfp − Id) < 0. Do the following questions: (1) Let rθ : S 2 → S 2 be the map “rotate S 2 by an angle θ”, (θ 6= 2kπ), defined by rθ(x 1 , x2 , x3 ) = (x 1 cos θ − x 2 sin θ, x1 sin θ + x 2 cos θ, x3 ). Prove: rθ is a Lefschetz map. (2) Let V be a vector space, and L : V → V a linear map. Let ∆ = {(v, v) : v ∈ V } be the diagonal in V × V , and ΓL = {(v, Lv) : v ∈ V } be the graph of L in V × V . Prove: ΓL intersects ∆ transversally if and only if 1 is not an eigenvalue of L. (3) Prove: If M is compact and f : M → M is a Lefschetz map, then f has only finitely many fixed points. (4) The Lefschetz number of a Lefshetz map f is defined to be L(f) = P f(p)=p Lp(f), where the summation is over all fixed points p. Compute L(rθ)for rθ in (1). (5) [Simply connectedness of R n \ M (dim M ≤ n − 3)] (Not required) Let M be a connected smooth manifold of dimension m. Prove: if S ⊂ M is a smooth submanifold of dimension k ≤ m−3, then for any p ∈ M−S, π1(M, p) ' π1(M−S, p)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《微分流形》课程教学资源(英文讲义)PSet3-1 EMBEDDING AND NEIGHBORHOODS.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.5 Whitney嵌入定理.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.4 光滑子流形.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.3 Sard定理.pdf
- 《微分流形》课程教学资源(英文讲义)PSet2-2 REGULAR VALUES.pdf
- 《微分流形》课程教学资源(英文讲义)PSet2-1 THE DIFFERENTIAL.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.1 光滑映射的微分.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.2 光滑映射的局部性态.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.3 单位分解及其应用.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.1 拓扑流形.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.2 光滑流形.pdf
- 《微分流形》课程教学资源(英文讲义)PSet1-2 SMOOTH MANIFOLDS/MAPS/FUNCTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)PSet1-1 SMOOTH MANIFOLDS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec29 SPECTRAL GEOMETRY.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec28 BOCHNER’S TCHNIQUE AND APPLICATIONS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec24 THE GLOBAL HESSIAN AND TOPONOGOV COMPARISON.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec26 APPLICATIONS OF THE VOLUME COMPARISON THEOREM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec25 THE LAPLACIAN AND VOLUME COMPARISON.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec27 THE SPHERE THEOREM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec20 THE INDEX FORM.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.7 横截性.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.6 管状邻域定理.pdf
- 《微分流形》课程教学资源(英文讲义)PSet4-1 VECTOR FIELDS.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.3 向量场生成的动力系统.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.1 光滑向量场.pdf
- 《微分流形》课程教学资源(英文讲义)PSet4-2 FLOWS, DISTRIBUTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.1 Lie 群及其Lie代数.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.4 分布.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.2 光滑向量场的积分曲线.pdf
- 《微分流形》课程教学资源(英文讲义)PSet5-1 LIE GROUPS AND LIE ALGEBRAS.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.2 Lie同态与指数映射.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.3 Lie子群.pdf
- 《微分流形》课程教学资源(英文讲义)PSet5-2 LIE GROUPS ACTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)PSet6-1 TENSORS AND DIFFERENTIAL FORMS.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.4 Lie群作用.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.1 张量与微分形式.pdf
- 《微分流形》课程教学资源(英文讲义)PSet6-2 INTEGRALS ON MANIFOLDS.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.2 流形上的张量与微分形式.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.3 流形上的积分.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.4 Stokes公式.pdf
