《微分流形》课程教学资源(英文讲义)PSet1-2 SMOOTH MANIFOLDS/MAPS/FUNCTIONS

PROBLEM SET 1,PART 2:SMOOTH MANIFOLDS/MAPS/FUNCTIONSDUE:SEP.26(1) [Construct smooth manifolds by gluing Euclidean open sets]Let M be a smooth manifold with atlas A=[(α,Ua,Va)).(a) Prove: the transition maps Paβ :=p o satisfy the cocycle conditions(i) PBo Paβ = (Pa on Pa(UαnUgnU)(ii) Paa = Idva:(ii) Paβ=(PBa)-1.(b) Now on the disjoint union M := l V& we define an equivalence relation viar~y3a,β s.t. re Va,ye Vp and y=Pap(ar).(i) Check: ~ is an equivalence relation on M.(ii) Prove: the quotient M/ ~ is homeomorphic to M.(i) Define a natural smooth structure on M/~(2) [Product of manifolds](a)Prove:Theproduct of two topological manifoldsis atopological manifold.(b) Let M, N be smooth manifolds with atlases ((pa,Ua, Va)) and ((s,Xp,Yp))respectively. Define an atlas on the product space M × N to be ((α × g, U ×Xg, V× Yp)). Check that this gives a smooth structure on M × N.(c) Explicitly construct local charts on T? = sl × s' c R4 to make it into a smoothmanifold. (You need to prove that your charts are compatible.)(3) [The need of global continuity in the definition of smoothness](a) Define two atlases A and B on R as follows:A=[(p,R,R)), Φ(r) =r,B={(i,Xi,Y):ieZ),whereX =Y,=(i-l,i+l)and bi(r)=r.Define a map f : (R, A) → (R, B) via『2,>0f(c) =0,≤0Prove:Foreach i,themap biofo-1:(Rn f-1(Xi))-→bi(X:) is smooth[So wecan't drop thecontinuityassumption inDefinition 1.1 inLecture 4.](b) Let (M,A) and (N, B) be smooth manifolds. Suppose for each point p, thereexists (pa, Ua, Va) e A and (s, X, Yp) E B so that p E Ua and f(Ua) C XgProve: Under this assumption we can drop the continuity assumption of f inDefinition 1.1in Lecture 4.1
PROBLEM SET 1, PART 2: SMOOTH MANIFOLDS/MAPS/FUNCTIONS DUE: SEP. 26 (1) [Construct smooth manifolds by gluing Euclidean open sets] Let M be a smooth manifold with atlas A = {(ϕα, Uα, Vα)}. (a) Prove: the transition maps ϕαβ := ϕβ ◦ ϕ −1 α satisfy the cocycle conditions (i) ϕβγ ◦ ϕαβ = ϕαγ on ϕα(Uα ∩ Uβ ∩ Uγ). (ii) ϕαα = IdVα . (iii) ϕαβ = (ϕβα) −1 . (b) Now on the disjoint union Mf := F α Vα we define an equivalence relation via x ∼ y ⇐⇒ ∃α, β s.t. x ∈ Vα, y ∈ Vβ and y = ϕαβ(x). (i) Check: ∼ is an equivalence relation on Mf. (ii) Prove: the quotient M / f ∼ is homeomorphic to M. (iii) Define a natural smooth structure on M / f ∼ (2) [Product of manifolds] (a) Prove: The product of two topological manifolds is a topological manifold. (b) Let M, N be smooth manifolds with atlases {(φα, Uα, Vα)} and {(ψβ, Xβ, Yβ)} respectively. Define an atlas on the product space M × N to be {(φα × ψβ, Uα × Xβ, Vα × Yβ)}. Check that this gives a smooth structure on M × N. (c) Explicitly construct local charts on T 2 = S 1 × S 1 ⊂ R 4 to make it into a smooth manifold. (You need to prove that your charts are compatible.) (3) [The need of global continuity in the definition of smoothness] (a) Define two atlases A and B on R as follows: A = {(ϕ, R, R)}, ϕ(x) = x, B = {(ψi , Xi , Yi) : i ∈ Z}, where Xi = Yi = (i − 1, i + 1) and ψi(x) = x. Define a map f : (R, A) → (R, B) via f(x) = 2, x > 0 0, x ≤ 0 Prove: For each i, the map ψi ◦ f ◦ ϕ −1 : ϕ(R ∩ f −1 (Xi)) → ψi(Xi) is smooth. [So we can’t drop the continuity assumption in Definition 1.1 in Lecture 4.] (b) Let (M, A) and (N, B) be smooth manifolds. Suppose for each point p, there exists (ϕα, Uα, Vα) ∈ A and (ψβ, Xβ, Yβ) ∈ B so that p ∈ Uα and f(Uα) ⊂ Xβ. Prove: Under this assumption we can drop the continuity assumption of f in Definition 1.1 in Lecture 4. 1

2PROBLEMSET1,PART2:SMOOTHMANIFOLDS/MAPS/FUNCTIONSDUE:SEP.26(4)[Orientability of smoothmanifolds]Let M be a smooth manifold of dimension n.We say M is orientableif there existsan atlas ((pa,Ua, Va)) of M so thatdet(dpaB)p>0for all p Ea(UanU),wheredpaβ is the Jacobian matrix ofap.(a) Prove: Sn is orientable.(b) Prove: For Ripn, the atlas we constructed in Lecture 2makes Rpn orientable forodd n but not for even n.(c) [Not required] Prove: Cpn is orientable.(d) Prove: If M, N are orientable, so is M × N. Conversely, if M × N are orientable,so are M and N.(5) [Smooth Urysohn's Lemma]Suppose A and B are two disjoint closed subsets of a smooth manifold M.(a) Show that there exists a smooth function f on M so that 0 ≤f(r)≤1 for allr EM, flA=0 and flB =1.(b)[Not required] For any closed subset K in M, there is a smooth nonnegativefunction f : M →R so that f-1(O) = K.[Hint:First work out thisproblem for M =R",in which caseRnK can bewritten as the umion of countablymany open balls.Try to construct a smoothfunction on each suchball whichispositiveinsidetheballandequalsOoutsidetheball. Then add these functions (each multiplied by suitable factors to guaranteesmoothness).(c) Show that there exists a smooth function f on M so that 0≤ f(r)≤1 for allr E M, f-1(0) = A and f-1(1) = B.(6) [Exhaustion function]A real-valued continuous function f on M is called an erhaustion function for M if forany c E R, the sublevel set f-'((-oo,cl) is compact. Prove: There exists a positivesmooth exhaustionfunction on any smoothmanifold
2 PROBLEM SET 1, PART 2: SMOOTH MANIFOLDS/MAPS/FUNCTIONS DUE: SEP. 26 (4) [Orientability of smooth manifolds] Let M be a smooth manifold of dimension n. We say M is orientable if there exists an atlas {(ϕα, Uα, Vα)} of M so that det(dϕαβ)p > 0 for all p ∈ ϕα(Uα ∩ Uβ), where dϕαβ is the Jacobian matrix of ϕαβ. (a) Prove: S n is orientable. (b) Prove: For RPn , the atlas we constructed in Lecture 2 makes RPn orientable for odd n but not for even n. (c) [Not required] Prove: CPn is orientable. (d) Prove: If M, N are orientable, so is M × N. Conversely, if M × N are orientable, so are M and N. (5) [Smooth Urysohn’s Lemma] Suppose A and B are two disjoint closed subsets of a smooth manifold M. (a) Show that there exists a smooth function f on M so that 0 ≤ f(x) ≤ 1 for all x ∈ M, f|A = 0 and f|B = 1. (b) [Not required] For any closed subset K in M, there is a smooth nonnegative function f : M → R so that f −1 (0) = K. [Hint: First work out this problem for M = R n , in which case R n \ K can be written as the union of countably many open balls. Try to construct a smooth function on each such ball which is positive inside the ball and equals 0 outside the ball. Then add these functions (each multiplied by suitable factors to guarantee smoothness). ] (c) Show that there exists a smooth function f on M so that 0 ≤ f(x) ≤ 1 for all x ∈ M, f −1 (0) = A and f −1 (1) = B. (6) [Exhaustion function] A real-valued continuous function f on M is called an exhaustion function for M if for any c ∈ R, the sublevel set f −1 ((−∞, c]) is compact. Prove: There exists a positive smooth exhaustion function on any smooth manifold
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《微分流形》课程教学资源(英文讲义)PSet1-1 SMOOTH MANIFOLDS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec29 SPECTRAL GEOMETRY.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec28 BOCHNER’S TCHNIQUE AND APPLICATIONS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec24 THE GLOBAL HESSIAN AND TOPONOGOV COMPARISON.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec26 APPLICATIONS OF THE VOLUME COMPARISON THEOREM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec25 THE LAPLACIAN AND VOLUME COMPARISON.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec27 THE SPHERE THEOREM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec20 THE INDEX FORM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec22 THEOREMS ON CURVATURE V.S. TOPOLOGY.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec21 CUT LOCUS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec23 RAUCH COMPARISON THEOREM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec18 IMMEDIATE APPLICATIONS OF JACOBI FIELD TO CURVATURE.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec17 JACOBI FIELDS.pdf
- 《黎曼几何》课程教学资源(英文讲义)PSet4 JACOBI FIELD.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec19 CONJUGATE POINT AND APPLICATIONS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec11 THE METHOD OF MOVING FRAMES.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec16 VARIATIONS OF LENGTH AND ENERGY.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec14 EXISTENCE OF SHORTEST GEODESICS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec15 COMPLETENESS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec13 GEODESICS ON RIEMANNIAN MANIFOLDS.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.2 光滑流形.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.1 拓扑流形.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.3 单位分解及其应用.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.2 光滑映射的局部性态.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.1 光滑映射的微分.pdf
- 《微分流形》课程教学资源(英文讲义)PSet2-1 THE DIFFERENTIAL.pdf
- 《微分流形》课程教学资源(英文讲义)PSet2-2 REGULAR VALUES.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.3 Sard定理.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.4 光滑子流形.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.5 Whitney嵌入定理.pdf
- 《微分流形》课程教学资源(英文讲义)PSet3-1 EMBEDDING AND NEIGHBORHOODS.pdf
- 《微分流形》课程教学资源(英文讲义)PSet3-2 TRANSERSALITY.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.7 横截性.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.6 管状邻域定理.pdf
- 《微分流形》课程教学资源(英文讲义)PSet4-1 VECTOR FIELDS.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.3 向量场生成的动力系统.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.1 光滑向量场.pdf
- 《微分流形》课程教学资源(英文讲义)PSet4-2 FLOWS, DISTRIBUTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.1 Lie 群及其Lie代数.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.4 分布.pdf
