《微分流形》课程教学资源(英文讲义)PSet3-1 EMBEDDING AND NEIGHBORHOODS

PROBLEMSET 3.PART 1:EMBEDDING AND NEIGHBORHOODSDUE:OCT.31(1)[Embedding T2intoR3](a)Recall thatT? = Sl × Sl = (,2,23, 24) I () + (r2)2 =1, (3)? +(a4)2 =1).Let t : T? → R4 be the canonical embedding and g : R4 → R3 be the mapg : R4 →R3, (2l,22,43,24) - (2(2 +23),22(2 +23),24)(i) For any p = (r*, r2, r3, 4) e T2, write down a basis of Im(di)p(ii) Write down the matrix of dg.(ii) Prove: The map f = g o t : T? → R3 is an embedding.(Not required) Prove: sm × s" can be embedded into IRm+n+1.(b)(Hint:FirstembednxRintoRn+1)[Embedding of RIP2 into R4](2)(a) Consider the mapf : s? →R3, (a, y,z)H(yz, za, ry)Prove: It induces an immersion of Rip2 outside several (how many?)points.(b)Prove:Themapf: s? →R3, (r,y,z) -(a? -y2,yz,zr, ry)is an embedding of RIP? to R4.(3)[The sphere bundle](a) Prove: The"sphere bundle" SM described in the proof of Theorem 2.5.8 is asmooth submanifoldofTM of dimension2m-1.[Hint: Find a smooth function on M so that SM is a regular level set.](b) Write down a complete proof of Theorem 2.5.8.[The normal bundle](4)(a)Prove Proposition 2.6.6.(b) (Not required) More generally, Proposition 2.6.6 for the normal bundle N(X, M)where X is a smooth submanifold of M.(c) (Not required) Suppose f E Coo(RK) and o is a regular value of f. Let X f-1(O). Prove: The normal bundle N(X, RK) is diffeomorphic to X × R.(d) (Not required) Let = [(r, r) [r E M) C M × M be the diagonal. Prove:: TM →N(A, M × M), (r,) - (r,r),(u, -v)isadiffeomorphism1
PROBLEM SET 3, PART 1: EMBEDDING AND NEIGHBORHOODS DUE: OCT. 31 (1) [Embedding T 2 into R 3 ] (a) Recall that T 2 = S 1 × S 1 = {(x 1 , x2 , x3 , x4 ) | (x 1 ) 2 + (x 2 ) 2 = 1,(x 3 ) 2 + (x 4 ) 2 = 1}. Let ι : T 2 ,→ R 4 be the canonical embedding and g : R 4 → R 3 be the map g : R 4 → R 3 , (x 1 , x2 , x3 , x4 ) 7→ (x 1 (2 + x 3 ), x2 (2 + x 3 ), x4 ). (i) For any p = (x 1 , x2 , x3 , x4 ) ∈ T 2 , write down a basis of Im(dι)p. (ii) Write down the matrix of dg. (iii) Prove: The map f = g ◦ ι : T 2 → R 3 is an embedding. (b) (Not required) Prove: S m × S n can be embedded into R m+n+1 . (Hint: First embed S n × R into R n+1 ) (2) [Embedding of RP2 into R 4 ] (a) Consider the map f : S 2 → R 3 , (x, y, z) 7→ (yz, zx, xy). Prove: It induces an immersion of RP2 outside several (how many?) points. (b) Prove: The map f : S 2 → R 3 , (x, y, z) 7→ (x 2 − y 2 , yz, zx, xy) is an embedding of RP2 to R 4 . (3) [The sphere bundle] (a) Prove: The “sphere bundle” SM described in the proof of Theorem 2.5.8 is a smooth submanifold of TM of dimension 2m − 1. [Hint: Find a smooth function on M so that SM is a regular level set.] (b) Write down a complete proof of Theorem 2.5.8. (4) [The normal bundle] (a) Prove Proposition 2.6.6. (b) (Not required) More generally, Proposition 2.6.6 for the normal bundle N(X, M), where X is a smooth submanifold of M. (c) (Not required) Suppose f ∈ C∞(R K) and 0 is a regular value of f. Let X = f −1 (0). Prove: The normal bundle N(X, R K) is diffeomorphic to X × R. (d) (Not required) Let ∆ = {(x, x) |x ∈ M} ⊂ M × M be the diagonal. Prove: Φ : TM → N(∆, M × M), (x, v) 7→ ((x, x),(v, −v)) is a diffeomorphism. 1

2PROBLEMSET3,PART1:EMBEDDINGANDNEIGHBORHOODSDUE:OCT.31(5)[Restriction of smooth map to smooth submanifold]Let f : M → N be a smooth map, t : X → M be a smooth submanifold, Y be asmooth submanifold of N, and f(X) C Y.(a)Prove:f=fot:X→Yisasmoothmap.(b) Prove: If f is an immersion on X, then f is an immersion.(c) Prove: The condition “f :X → f(X) is a diffeomorphism" in the statement ofTheorem 2.6.4 canbeweakened to"fis injectiveonX".[Immersions/embeddings are dense](6)(a)Let UcIRm be open, and f :U-→Rnbe smooth.Suppose n≥2m.Prove:Forany e > 0, there exists an m × n matrix A = (aij) with lajl 0, there isan immersion fe : M -→ RK with If - fel < e.(c) (Not required) State and prove a similar theorem for embedding.(7)[Isotopy] (Not required)Let f.g : M -→ N be two embeddings. An smooth isotopy between f and g is asmooth map F : M × R → N so that.F(r,0)=f(r),F(,1)=g();. F := FlMxft) is an embedding for 0 ≤t ≤1.(a)Prove: Smooth isotopy is an equivalence relation(b) Prove: If the induced level-preserving mapG:M×R→N×R, G(r,t)=(F(a,t),t)is an embedding, then F : M × R -→ N is an isotopy.(c) Prove: If each Ft is a proper embedding, then the induced level-preserving mapG is an embedding. [In particular, the conclusion holds if M is compact.]
2 PROBLEM SET 3, PART 1: EMBEDDING AND NEIGHBORHOODS DUE: OCT. 31 (5) [Restriction of smooth map to smooth submanifold] Let f : M → N be a smooth map, ι : X ,→ M be a smooth submanifold, Y be a smooth submanifold of N, and f(X) ⊂ Y . (a) Prove: ˜f = f ◦ ι : X → Y is a smooth map. (b) Prove: If f is an immersion on X, then ˜f is an immersion. (c) Prove: The condition “f : X → f(X) is a diffeomorphism” in the statement of Theorem 2.6.4 can be weakened to “f is injective on X”. (6) [Immersions/embeddings are dense] (a) Let U ⊂ R m be open, and f : U → R n be smooth. Suppose n ≥ 2m. Prove: For any ε > 0, there exists an m × n matrix A = (aij ) with |aij | 0, there is an immersion fε : M → R K with |f − fε| < ε. (c) (Not required) State and prove a similar theorem for embedding. (7) [Isotopy] (Not required) Let f, g : M → N be two embeddings. An smooth isotopy between f and g is a smooth map F : M × R → N so that • F(x, 0) = f(x), F(x, 1) = g(x); • Ft := F|M×{t} is an embedding for 0 ≤ t ≤ 1. (a) Prove: Smooth isotopy is an equivalence relation. (b) Prove: If the induced level-preserving map G : M × R → N × R, G(x, t) = (F(x, t), t) is an embedding, then F : M × R → N is an isotopy. (c) Prove: If each Ft is a proper embedding, then the induced level-preserving map G is an embedding. [In particular, the conclusion holds if M is compact.]
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.5 Whitney嵌入定理.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.4 光滑子流形.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.3 Sard定理.pdf
- 《微分流形》课程教学资源(英文讲义)PSet2-2 REGULAR VALUES.pdf
- 《微分流形》课程教学资源(英文讲义)PSet2-1 THE DIFFERENTIAL.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.1 光滑映射的微分.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.2 光滑映射的局部性态.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.3 单位分解及其应用.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.1 拓扑流形.pdf
- 《微分流形》课程教学资源(英文讲义)第1章 光滑流形 1.2 光滑流形.pdf
- 《微分流形》课程教学资源(英文讲义)PSet1-2 SMOOTH MANIFOLDS/MAPS/FUNCTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)PSet1-1 SMOOTH MANIFOLDS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec29 SPECTRAL GEOMETRY.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec28 BOCHNER’S TCHNIQUE AND APPLICATIONS.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec24 THE GLOBAL HESSIAN AND TOPONOGOV COMPARISON.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec26 APPLICATIONS OF THE VOLUME COMPARISON THEOREM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec25 THE LAPLACIAN AND VOLUME COMPARISON.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec27 THE SPHERE THEOREM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec20 THE INDEX FORM.pdf
- 《黎曼几何》课程教学资源(英文讲义)Lec22 THEOREMS ON CURVATURE V.S. TOPOLOGY.pdf
- 《微分流形》课程教学资源(英文讲义)PSet3-2 TRANSERSALITY.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.7 横截性.pdf
- 《微分流形》课程教学资源(英文讲义)第2章 光滑映射的微分及其应用 2.6 管状邻域定理.pdf
- 《微分流形》课程教学资源(英文讲义)PSet4-1 VECTOR FIELDS.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.3 向量场生成的动力系统.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.1 光滑向量场.pdf
- 《微分流形》课程教学资源(英文讲义)PSet4-2 FLOWS, DISTRIBUTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.1 Lie 群及其Lie代数.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.4 分布.pdf
- 《微分流形》课程教学资源(英文讲义)第3章 光滑向量场 3.2 光滑向量场的积分曲线.pdf
- 《微分流形》课程教学资源(英文讲义)PSet5-1 LIE GROUPS AND LIE ALGEBRAS.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.2 Lie同态与指数映射.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.3 Lie子群.pdf
- 《微分流形》课程教学资源(英文讲义)PSet5-2 LIE GROUPS ACTIONS.pdf
- 《微分流形》课程教学资源(英文讲义)PSet6-1 TENSORS AND DIFFERENTIAL FORMS.pdf
- 《微分流形》课程教学资源(英文讲义)第4章 李群初步 4.4 Lie群作用.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.1 张量与微分形式.pdf
- 《微分流形》课程教学资源(英文讲义)PSet6-2 INTEGRALS ON MANIFOLDS.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.2 流形上的张量与微分形式.pdf
- 《微分流形》课程教学资源(英文讲义)第5章 流形上的微积分 5.3 流形上的积分.pdf
