香港浸会大学:Community Search over Big Graphs:Models, Algorithms, and Opportunities

Community Search over Big Graphs: Models, algorithms, and Opportunities Xin Huang*, Laks V.S. Lakshmanan, Jianliang Xu UNiversity of british Columbia, Vancouver, canada Hong Kong Baptist University, Hong Kong, China xinhuang@comp. hkbu. edu. hk, laks@ubc. cS. ca, xul@comp. hkbu. edu. hk UBC 浸會 历 1956 BAPTIS
Community Search over Big Graphs: Models, Algorithms, and Opportunities Xin Huang∗† , Laks V.S. Lakshmanan∗ , Jianliang Xu† ∗University of British Columbia, Vancouver, Canada †Hong Kong Baptist University, Hong Kong, China xinhuang@comp.hkbu.edu.hk, laks@ubc.cs.ca, xujl@comp.hkbu.edu.hk

Tutorial outline ntroduction, Motivations, and challenges Networks Community Detection Community Search(4 Parts Densely-connected community search Attributed community search Social circle discovery Querying geo-social groups Future Work Open problems
Tutorial Outline • Introduction, Motivations, and Challenges • Networks & Community Detection • Community Search (4 Parts) – Densely-connected community search – Attributed community search – Social circle discovery – Querying geo-social groups • Future Work & Open Problems 2

Networks Networks are everywhere(e.g. chemistry biology social networks the Web, etc
• Networks are everywhere (e.g. chemistry, biology, social networks, the Web, etc.) 3 Networks

Communities Communities naturally exist in networks. Blogosphere
Communities • Communities naturally exist in networks. Blogosphere 4

Community structure Community structure: Nodes with a shared latent property, densely inter-connected Many reasons for communities to be formed Social Networks Citation Networks World wide web biological Networks
• Community structure: Nodes with a shared latent property, densely inter-connected . • Many reasons for communities to be formed: Social Networks Citation Networks World Wide Web Biological Networks 5 Community Structure

Basis of community Formation The strength of weak ties [Mark Granovetter, 1973] and the models of small-world [Strogatz and Watts, Nature 981 both suggest Strong ties are well embedded in the network Weak ties span long ranges Given a network how do we find all communities?
• The strength of weak ties [Mark Granovetter,1973] and the models of small-world [Strogatz and Watts, Nature’98] both suggest – Strong ties are well embedded in the network – Weak ties span long ranges • Given a network, how do we find all communities? 6 Basis of Community Formation

Community detection Q: Given a network how do we find all communities? A: Find weak ties and identify communities Betweenness centrality [Girvan and Newman, PNAS 02]. Modularity [Newman, PNAS 061 Graph partitioning methods [Karypis and Kumar, SISC08 SFI collaboration network[Newman
• Q: Given a network, how do we find all communities? • A: Find weak ties and identify communities – Betweenness centrality [Girvan and Newman, PNAS’02], – Modularity [Newman, PNAS’06] – Graph partitioning methods [Karypis and Kumar, SISC’08] SFI collaboration network [Newman] 7 Community Detection

[Palla et al. Nature/) Over lapping Communities Communities defined by different nodes in a network may be quite different Scientists Physicists Department of Biological Physics Mathematicians ologists zoom Hobb Scientific Community Family Friends Schoolmates 8
Overlapping Communities • Communities defined by different nodes in a network may be quite different. 8 [Palla et al. Nature’05])

Community search Problem: Given a set of query nodes, find densely connected communities containing them query vertex State-of-the-art research focus Simple and static graphs Evolving, attributed, and oo 8a8 location-based big graphs
Community Search • Problem: Given a set of query nodes, find densely connected communities containing them. • State-of-the-art research focus: Simple and static graphs → Evolving, attributed, and location-based big graphs query vertex 9

Community Detection V.S. Community search Community detection: identify all communities. fundamental widely studied global computation(expensive) static graphs(hard to handle evolving graphs) Community search: find query-dependent communities useful less studied user-centered personalized search dynamIc graphs
Community Detection v.s. Community Search • Community detection: identify all communities. – fundamental & widely studied – global computation (expensive) – static graphs (hard to handle evolving graphs) • Community search: find query-dependent communities – useful & less studied – user-centered& personalized search – dynamic graphs 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 清华大学出版社:《JAVA程序设计实例教程》课程教材电子教案(PPT课件讲稿,共七章,主编:关忠).ppt
- 香港中文大学:Arm board tutorial Part 1 Using the ARM board And start working with C Tutorial 5 and 6.pptx
- 同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)Evaluation & other classifiers.pptx
- 面积对象编程(PPT讲稿)Object-Oriented Programming and Classes.ppt
- 《计算机网络概述》教学资源(PPT课件讲稿).ppt
- 《计算机组成原理》课程PPT教学课件(讲稿)第三章 计算机核心部件及其工作原理.ppt
- 《大型机系统管理技术》课程教学资源(PPT课件讲稿)第2章 大型服务器外存管理.ppt
- 《ARM嵌入式软件开发》课程教学资源(PPT课件讲稿)第三章 ARM体系结构及编程模型.ppt
- 北京大学:基于信息利用的烟花算法研究(PPT讲稿)Research on Fireworks Algorithms from the Perspective of Information Utilization.pptx
- 系统编程工具REXX和CLIST.ppt
- 《软件测试 Software Testing》教学资源(PPT讲稿)Part 1 The Big Picture.ppt
- 西南民族大学:软件需求分析与总体设计(PPT讲稿,主讲:殷锋).ppt
- 中国地质大学(武汉):R语言入门教程(PPT讲稿).ppt
- 对外经济贸易大学:《大学计算机基础》课程电子教案(PPT课件)第5章 PowerPoint幻灯片制作(PowerPoint 2010).pptx
- 西安培华学院:《计算机网络工程》课程教学资源(PPT课件讲稿)第1章 网络工程知识(主讲:张伟).ppt
- 《计算机网络安全》课程教学资源(PPT课件讲稿)第四章 数据加密技术.ppt
- 计算机应用专业《计算机网络》教学大纲.doc
- 《计算机网络 COMPUTER NETWORKS》课程教学资源(PPT课件讲稿)Chapter 18 互联网协议 Internet Protocols(IP).ppt
- 淮阴工学院:《数据库原理》课程教学资源(PPT课件讲稿)第4章 结构化查询语言SQL.ppt
- 《C++语言程序设计》课程教学资源(PPT课件)第14讲 运算符重载.ppt
- 《数字图像处理》课程教学资源(PPT课件讲稿)第5章 图像编码与压缩.ppt
- 厦门理工学院:《网页设计》培训课件教学资源(PPT课件).ppt
- 西安电子科技大学:《计算机操作系统》课程PPT教学课件(讲稿)第六章 文件管理.ppt
- 机器翻译研讨会(PPT讲稿)神经机器翻译前沿进展(PPT讲稿).pptx
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第三章 计算机系统的组成与工作原理 3.1 理解模型机的结构及工作过程 3.2 掌握单片机的结构.ppt
- 清华大学出版社:《计算机导论 Introduction to Computer Science》课程配套教材教学资源(PPT课件讲稿,第3版)第4章 操作系统与网络知识.ppt
- 《数据库系统原理》课程PPT教学课件(SQLServer)第7章 Transact-SQL程序设计.ppt
- 《Chemdraw 软件教程》教学资源(PPT讲稿)第一部分 ChemDraw简介.ppt
- 北京大学:计算智能实验室(PPT讲稿)烟花算法算子分析.pptx
- 上饶师范学院:《数据库系统原理 An Introduction to Database System》课程教学资源(PPT课件讲稿,共九章).ppt
- 清华大学:《数据中心网络 Data Center Networking》课程教学资源(PPT课件讲稿).pptx
- 人工神经网络(ANN)方法简介(PPT课件讲稿).ppt
- 合肥工业大学:使用大数据进行计算建模(PPT讲稿)Computing/Modeling with Big Data(主讲:吴信东).pptx
- 《模式识别》课程教学资源(PPT讲稿)Learning with information of features.ppt
- 烟台大学:《C语言程序设计》课程电子教案(PPT课件讲稿)第五章 数组、字符串、指针(主讲:荆蕾).ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 树与二叉树.ppt
- 南京大学:《计算机图形学》课程教学资源(PPT课件讲稿)第6讲 图形观察与几何变换.pptx
- 《高级软件工程》课程教学大纲 Advanced Software Engineering.doc
- 《Android 程序设计基础》课程教学资源(PPT课件讲稿)第8章 数据存储和访问.ppt
- 新乡学院:《PHP动态网站开发》课程教学资源(教学大纲).pdf