《模式识别》课程教学资源(PPT讲稿)Learning with information of features

Learning with information of features 2009-06-05 panec
LOGO Learning with information of features 2009-06-05

http:/parnec.nuaa.edu.cn Contents Motivation Incorporating prior knowledge on features into learning (AISTATS OT Regularized learning with networks of features (NIPS08 Conclusion
Company name www.themegallery.com Contents Motivation Regularized learning with networks of features (NIPS’08) Incorporating prior knowledge on features into learning (AISTATS’07) Conclusion

http:/parnec.nuaa.edu.cn Motivation Given data X∈R×dx1 2d n min ∑。1(,f(x)+f IF prior information of samples Manifold structure information LAPSVM Transformation invariance VSVM. ISSVM Permutation invariance 丌-SVM Imbalance information SVM for imbalance distribution Cluster structure information Structure sⅤM
Company name www.themegallery.com Motivation 11 12 1 21 22 2 1 2 d d n n nd n d x x x x x x x x x Given data X∈R n×d n i=1 min ( , ( )) || || i i F l y f x f + + prior information of samples Manifold structure information LAPSVM Transformation invariance VSVM, ISSVM Permutation invariance π- SVM Imbalance information SVM for imbalance distribution Cluster structure information Structure SVM

http:/parnec.nuaa.edu.cn Motivation 12x 2d n2 Information in the sample spa ace (Space spanned by samples)
Company name www.themegallery.com Motivation 11 12 1 21 22 2 1 2 d d n n nd n d x x x x x x x x x Information in the sample space (space spanned by samples)

http:/parnec.nuaa.edu.cn Motivation 12 Prior information in the feature or attribute space (Space spanned by features)
Company name www.themegallery.com Motivation 11 12 1 21 22 2 1 2 d d n n nd n d x x x x x x x x x Prior information in the feature or attribute space (space spanned by features)

http:/parnec.nuaa.edu.cn Motivation 12 min 2i(, f(x, ))+2 l lF prior information of features for better generalization
Company name www.themegallery.com Motivation n i=1 min ( , ( )) || || i i F l y f x f + + prior information of features for better generalization 11 12 1 21 22 2 1 2 d d n n nd n d x x x x x x x x x

http:/parnec.nuaa.edu.cn Contents Motivation Incorporating prior knowledge on features into learning (AISTATS) Regularized learning with networks of features (7Fs78) Conclusion
Company name www.themegallery.com Contents Motivation Regularized learning with networks of features (NIPS’08) Incorporating prior knowledge on features into learning (AISTATS’07) Conclusion

http:/parnec.nuaa.edu.cn Incorporating prior knowledge on features into learning(AISTATS'o7) ●MotⅤ ation OKernel design by meta-features ● a toy example handwritten digit recognition aided by meta-features O Towards a theory of meta-features
Company name www.themegallery.com Incorporating prior knowledge on features into learning (AISTATS’07) ⚫ Motivation ⚫Kernel design by meta-features ⚫ A toy example ⚫ Handwritten digit recognition aided by meta-features ⚫ Towards a theory of meta-features

http:/parnec.nuaa.edu.cn Incorporating prior knowledge on features into learning (A/STATS'O7 ●MotⅤ ation KErnel design by meta-features ● A toy examp le O Handwritten digit recognition aided by meta-features O Towards a theory of meta-features
Company name www.themegallery.com Incorporating prior knowledge on features into learning (AISTATS’07) ⚫ Motivation ⚫Kernel design by meta-features ⚫ A toy example ⚫ Handwritten digit recognition aided by meta-features ⚫ Towards a theory of meta-features

http:/parnec.nuaa.edu.cn Incorporating prior knowledge on features into learning (A/STATS07 Image recognition task Feature: pixel(gray level) Coordinate(x,y)of pixel can be treated as Feature of features: meta-feature Feature with similar meta-feature, or more specifically, adjacent pixel should be assigned similar weights Propose a framework incorporating meta-features into learning
Company name www.themegallery.com Incorporating prior knowledge on features into learning (AISTATS’07) Image recognition task Feature : pixel (gray level) Coordinate (x,y) of pixel can be treated as Feature of features: meta-feature Propose a framework incorporating meta-features into learning Feature with similar meta-feature, or more specifically, adjacent pixel should be assigned similar weights
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 合肥工业大学:使用大数据进行计算建模(PPT讲稿)Computing/Modeling with Big Data(主讲:吴信东).pptx
- 人工神经网络(ANN)方法简介(PPT课件讲稿).ppt
- 清华大学:《数据中心网络 Data Center Networking》课程教学资源(PPT课件讲稿).pptx
- 上饶师范学院:《数据库系统原理 An Introduction to Database System》课程教学资源(PPT课件讲稿,共九章).ppt
- 北京大学:计算智能实验室(PPT讲稿)烟花算法算子分析.pptx
- 《Chemdraw 软件教程》教学资源(PPT讲稿)第一部分 ChemDraw简介.ppt
- 《数据库系统原理》课程PPT教学课件(SQLServer)第7章 Transact-SQL程序设计.ppt
- 清华大学出版社:《计算机导论 Introduction to Computer Science》课程配套教材教学资源(PPT课件讲稿,第3版)第4章 操作系统与网络知识.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第三章 计算机系统的组成与工作原理 3.1 理解模型机的结构及工作过程 3.2 掌握单片机的结构.ppt
- 机器翻译研讨会(PPT讲稿)神经机器翻译前沿进展(PPT讲稿).pptx
- 西安电子科技大学:《计算机操作系统》课程PPT教学课件(讲稿)第六章 文件管理.ppt
- 厦门理工学院:《网页设计》培训课件教学资源(PPT课件).ppt
- 《数字图像处理》课程教学资源(PPT课件讲稿)第5章 图像编码与压缩.ppt
- 香港浸会大学:Community Search over Big Graphs:Models, Algorithms, and Opportunities.ppt
- 清华大学出版社:《JAVA程序设计实例教程》课程教材电子教案(PPT课件讲稿,共七章,主编:关忠).ppt
- 香港中文大学:Arm board tutorial Part 1 Using the ARM board And start working with C Tutorial 5 and 6.pptx
- 同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)Evaluation & other classifiers.pptx
- 面积对象编程(PPT讲稿)Object-Oriented Programming and Classes.ppt
- 《计算机网络概述》教学资源(PPT课件讲稿).ppt
- 《计算机组成原理》课程PPT教学课件(讲稿)第三章 计算机核心部件及其工作原理.ppt
- 烟台大学:《C语言程序设计》课程电子教案(PPT课件讲稿)第五章 数组、字符串、指针(主讲:荆蕾).ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 树与二叉树.ppt
- 南京大学:《计算机图形学》课程教学资源(PPT课件讲稿)第6讲 图形观察与几何变换.pptx
- 《高级软件工程》课程教学大纲 Advanced Software Engineering.doc
- 《Android 程序设计基础》课程教学资源(PPT课件讲稿)第8章 数据存储和访问.ppt
- 新乡学院:《PHP动态网站开发》课程教学资源(教学大纲).pdf
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)构件化软件 Component Software.ppt
- MSC Software Corporation:Dynamic System Modeling, Simulation, and Analysis Using MSC.EASY5(Introductory Class).ppt
- 南京航空航天大学:《C++》课程电子教案(PPT课件讲稿)第2章 文件操作.pptx
- 《Java面向对象程序设计》课程教学资源(PPT课件讲稿)第四章 Java图形用户界面设计 4.3 事件处理.pptx
- 中国科学技术大学:《网络信息安全 NETWORK SECURITY》课程教学资源(PPT课件讲稿)Windows 操作系统.ppt
- 中国科学技术大学:《嵌入式操作系统 Embedded Operating Systems》课程教学资源(PPT课件讲稿)第七讲 存储器管理.ppt
- 华南理工大学:神经计算的生理和动力学指标(PPT讲稿).ppt
- 《编译原理与技术》课程教学资源(PPT课件讲稿)运行环境.ppt
- 同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)Data Preprocessing.ppt
- 中国科学技术大学:《算法基础》课程教学资源(PPT课件讲稿)第五讲 概率分析与随机算法.pptx
- Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks.pptx
- 《数据结构》课程教学资源(PPT讲稿)二叉树和二叉搜索树 Trees, Binary Trees, and Binary Search Trees.ppt
- 《网页设计与制作》课程PPT教学课件(Fireworks Mx 2004)第九章 Firework图像处理.ppt
- 西安交通大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第4章 存储器系统接口.ppt