《模式识别》课程教学资源(书籍文献)Data Clustering - 50 Years Beyond K-means

Data Clustering: 50 Years Beyond K-means Anil K.Jain Department of Computer Science Michigan State University 合
Data Clustering: 50 Years Beyond K -means Anil K. Jain Department of Computer Science Michigan State University

King-Sun Fu King-Sun Fu(1930-1985),a professor at Purdue was instrumental in the founding of IAPR,served as its first president,and is widely recognized for his extensive contributions to pattern recognition.(Wikipedia)
King-Sun Fu King-Sun Fu (1930-1985), a professor at Purdue was instrumental in the founding instrumental in the founding of IAPR of IAPR served as its first , served as its first president, and is widely recognized for his extensive contributions to pattern recognition. (Wikipedia)

Angkor Wat,Siem Reap Angfor Wat Combodia 了rw Hindu temple built by a Khmer king ~1150 AD; Khmer kingdom declined in the 15th century; French explorers discovered the hidden ruins in 1860 (Angelina Jolie alias "Lora Croft"in Tomb Raider thriller)
Angkor Wat, Siem Reap Hindu temple built by a Khmer king ~1150 AD; Khmer kingdom declined in the 15th century; French explorers discovered the hidden ruins in 1860 (Angelina Jolie alias Angelina Jolie alias Lora Croft in “Lora Croft ” in Tomb Raider thriller)

Apsaras of Angkor Wat Angkor Wat contains the most unique gallery of over 2,000 women depicted by detailed full body portraits What facial types are represented in these portraits? Kent Davis,Biometrics of the Godesess,DatAsia,Aug 2008 S.Marchal,Costumes et Parures Khmers:D'apres les devata D'Angkor-Vat,1927
Apsaras of Angkor Wat • Angkor Wat contains the most unique gallery of over 2,000 women depicted by detailed full body portraits • What facial types are represented in these portraits? Kent Davis, Biometrics of the Godesess, DatAsia, Aug 2008 S. Marchal, Costumes et Parures Khmers: D’apres les devata D’Angkor-Vat, 1927

Clustering of Apsara Faces Single Link 370 新第部 280 9105 783 6 127 landmarks oopppp8oooo C+ s卷±56电e0b++G+年o+9+ d g 94车年+++ 9 10 3 6 8 OX Xǒ Single Link clusters b o+9 +6半e +0p How do we validate the groups? Shape alignment
Clustering of Apsara Faces Single Link 127 facial landmarks 127 landmarks 1 2 9 10 3 4 6 5 7 8 Single Link clusters Shape alignment How do we validate the groups?

Ground Truth 整盛烟 666666665-- Khmer Cultural Center
Ground Truth Khmer Cultural Center

Data Explosion The digital universe was ~281 exabytes (281 billion gigabytes)in 2007;it would grow 10 times by 2011 Images and video,captured by over one billion devices (camera phones),are the major source To archive and effectively use this data,we need tools for data categorization http://eon.businesswire.com/releases/information/digital/prweb509640.htm http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf 尚
Data Explosion • Th di it l i 281 b t The digital universe was ~281 exabytes (281 billion gigabytes) in 2007; it would grow 10 times by 2011 • Images and video, captured by over one billion d i ( h ) th j devices (camera phones), are the major source • To archive and effectively use this data, we need tools for data categorization http://eon.businesswire.com/releases/information/digital/prweb509640.htm http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf

Data Clustering Grouping of objects into meaningful categories Classification vs.clustering Unsupervised learning,exploratory data analysis, grouping,clumping,taxonomy,typology,Q-analysis Given a representation of n objects,find K clusters based on a measure of similarity Partitional vs.hierarchical A.K.Jain and R.C.Dubes.Algorithms for Clustering Data,Prentice Hall,1988.(available for download at:http://dataclustering.cse.msu.edu/)
Data Clustering • Grouping of objects into meaningful categories • Classification vs. clustering • Unsupervised learning, exploratory data analysis, grouping clumping taxonomy typology Q grouping, clumping, taxonomy, typology, Q-analysis analysis • Given a representation of n objects, find K clusters based on a measure of based on a measure of similarity similarity • Partitional vs. hierarchical A. K. Jain and R. C. Dubes. Algorithms for Clustering Data, Prentice Hall, 1988. (available for download at: http g) ://dataclustering.cse.msu.edu/)

Why Clustering? Natural classification:degree of similarity among forms (phylogenetic relationship or taxonomy) Data exploration:discover underlying structure, generate hypotheses,detect anomalies Compression:method for organizing data Applications:any scientific field that collects data! Astronomy,biology,marketing,engineering,..... Google Scholar:~1500 clustering papers in 2007 alone!
Why Clustering? • Natural classification: degree of similarity among forms (phylogenetic relationship or taxonomy) • Data exploration: discover underlying structure, generate hypotheses, detect anomalies • Compression: method for organizing data • Applications: any scientific field that collects data! Astronomy, biology, marketing, engineering,….. Google Scholar: ~1500 clustering papers in 2007 alone!

Historical Developments Cluster analysis first appeared in the title of a 1954 article analyzing anthropological data (STOR) Hierarchical Clustering:Sneath (1957),Sorensen (1957) K-Means:independently discovered Steinhaus1(1956),Lloyd2 (1957),Cox3(1957),Bal∥&Hal(1967),MacQueen5(1967) Mixture models (Wolfe,1970) Graph-theoretic methods (Zahn,1971) .K Nearest neighbors (Jarvis Patrick,1973) Fuzzy clustering (Bezdek,1973) Self Organizing Map(Kohonen,1982) Vector Quantization (Gersho and Gray,1992) 1Acad.Polon.Sci.,2Bell Tel.Report,3JASA,4Behavioral Sci.,5Berkeley Symp.Math Stat Prob. 合口
Historical Developments • Cluster analysis first appeared in the title of a 1954 article analyzing anthropological data (JSTOR) • Hierarchical Clustering: Sneath (1957) Sorensen (1957) Sneath (1957) , Sorensen (1957) • K-Means: independently discovered Steinhaus 1 (1956), Lloyd2 (1957), Cox3 (1957), Ball & Hall4 (1967), MacQueen 5 (1967) • Mixture models (Wolfe, 1970 ) • Graph-theoretic methods (Zahn, 1971) • K Nearest neighbors (Jarvis & Patrick, 1973) • Fuzzy clustering (Bezdek, 1973) • Self Organizing Map (Kohonen, 1982) • Vector Quantization (Gersho and Gray, 1992) 1Acad. Polon. Sci., 2Bell Tel. Report, 3JASA, 4Behavioral Sci., 5Berkeley Symp. Math Stat & Prob
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《模式识别》课程教学资源(书籍文献)Data Clustering - A Review(A.K. JAIN、M.N. MURTY、P.J. FLYNN).pdf
- 《模式识别》课程教学资源(书籍文献)A tutorial on Principal Components Analysis(Lindsay I Smith).pdf
- 《模式识别》课程教学资源(书籍文献)A Tutorial on Principal Component Analysis(Jonathon Shlens).pdf
- 《模式识别》课程教学资源(书籍文献)Sequential Minimal Optimization - A Fast Algorithm for Training Support Vector Machines(John C. Platt).pdf
- 《模式识别》课程教学资源(书籍文献)A Tutorial on Support Vector Machines for Pattern Recognition(CHRISTOPHER J.C. BURGES).pdf
- 《模式识别》课程教学资源(书籍文献)Introduction to Support Vector Learning.pdf
- 《模式识别》课程教学资源(书籍文献)TRENDS & CONTROVERSIES TRENDS & CONTROVERSIES - Support vector machines.pdf
- 《模式识别》课程教学资源(书籍文献)Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance.pdf
- 《模式识别》课程教学资源(书籍文献)Tutorial on maximum likelihood estimation.pdf
- 《模式识别》课程教学资源(书籍文献)Statistical Pattern Recognition - A Review.pdf
- 《模式识别》课程教学资源(书籍文献)Digital Image Processing(Second Edition,Review Material,Rafael C. Gonzalez、Richard E. Woods).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)人工神经网络简介.pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)非监督学习方法(第二部分).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)非监督学习方法(第一部分).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)特征的选择和提取(第三部分).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)特征的选择和提取(第二部分).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)特征的选择和提取(第一部分).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)非线性判别和函数.pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)近邻法(甘锐、金文马).pdf
- 北京大学:《模式识别》课程教学资源(课件讲稿)贝叶斯决策理论(第二部分).pdf
- 《模式识别》课程教学资源(书籍文献)Artificial neural networks - a tutorial(Anil K. Jain、Jianchang Mao).pdf
- 《模式识别》课程教学资源(书籍文献)Learning in Linear Neural Networks - A Survey.pdf
- 《模式识别》课程教学资源(书籍文献)Neural Networks for Classification - A Survey.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第0章 序言(覃思义).pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第1章 预备知识 第1节 概率空间.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第1章 预备知识 第2节 随机变量及其分布.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第1章 预备知识 第3节 随机变量的函数.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第1章 预备知识 第4节 随机变量的数字特征.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第1章 预备知识 第5节 特征函数.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第2章 随机过程的基本概念 第1节 随机过程的定义及分类.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第2章 随机过程的基本概念 第2节 随机过程的分布.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第2章 随机过程的基本概念 第3节 随机过程的数字特征.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第2章 随机过程的基本概念 第4节 随机过程的基本类型.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第3章几类重要随机过程 第1节 正态过程.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第3章几类重要随机过程 第2节 维纳过程.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第3章几类重要随机过程 第3节 泊松过程(一).pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第3章几类重要随机过程 第4节 泊松过程(二).pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第4章 二阶矩过程的均方微积分 第1节 收敛性与极限定理.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第4章 二阶矩过程的均方微积分 第2节 二阶矩随机变量空间及均方极限.pdf
- 电子科技大学:《随机过程及应用 Stochastic Processes and Applications》课程教学资源(课件讲稿)第4章 二阶矩过程的均方微积分 第3节 随机过程的均方极限与均方连续.pdf